• Title/Summary/Keyword: egress

Search Result 211, Processing Time 0.031 seconds

Fire Growth of Wood Cribs and Available Safe Egress Time (목재연소시의 실내화재성상과 안전대피시간)

  • 정길순;태순호;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.72-77
    • /
    • 1993
  • Available Safe Egress Time(ASET) is the time available for occupants to evacuate safely In compartment fire, and It depends on the time of fire detection and hazardous conditions. The purpose of thls study Is to provide an analytical basis and experimental data for estimating the fire growth in compartments and the available safe egress time, and to compare the experimental data with those proposed equations. As a result, hazard order Is poison to CO, descent of smoke layer, poison to $CO_2$, burn to hot smoke layer, and lack of $O_2$, ASET is lengthened in this order. Also, The more fire load is increased, the more ASET is shorted.

  • PDF

A COMPUTER SIMULATION MODEL AS A MEANS OF EMERGENCY EVACUATION TRAINING FOR CONSTRUCTION PROJECTS

  • Chung-Suk Cho;Dong-Cheol Shin
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.864-868
    • /
    • 2009
  • Fire safety management on any construction site should start with recognizing fire risks in the workplace, understanding the extent of the risks, and proper assessment of the controls necessary to reduce the risks. However, the most important step to prevent fire-related accidents on jobsites is the constant review and monitoring of processes and controls by all individuals involved. This study was conducted to analyze the effectiveness of using computer simulation as an addition to maps or floor plans in safety training and management. Simulex was used on a real project to model various egress routes and to identify potential problem areas of the evacuation strategy. This study highlights the efficacy of simulated emergency evacuation as a training tool that visually shows constantly altering means of egress.

  • PDF

Evaluation on Fire Available Safe Egress Time of Commercial Buildings based on Artificial Neural Network (인공신경망 기반 상업용 건축물의 화재 피난허용시간 평가)

  • Darkhanbat, Khaliunaa;Heo, Inwook;Choi, Seung-Ho;Kim, Jae-Hyun;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.111-120
    • /
    • 2021
  • When a fire occurs in a commercial building, the evacuation route is complicated and the direction of smoke and flame is similar to that of the egress route of occupants, resulting in many casualties. Performance-based evacuation design for buildings is essential to minimize human casualties. In order to apply the performance-based evacuation design to buildings, it requires a complex fire simulation for each building, demanding a large amount of time and manpower. In order to supplement this, it would be very useful to develop an Available Safe Egress Time (ASET) prediction model that can rationally derive the ASET without performing a fire simulation. In this study, the correlations between fire temperature with visibility and toxic gas concentration were investigated through a fire simulation on a commercial building, from which databases for the training of artificial neural networks (ANN) were created. Based on this, an ANN model that can predict the available safe egress time was developed. In order to examine whether the proposed ANN model can be applied to other commercial buildings, it was applied to another commercial building, and the proposed model was found to estimate the available safe egress time of the commercial building very accurately.

Fire and Evacuation Analysis in Environmental Energy Facilities (환경에너지 시설내 화재 및 피난해석)

  • Jeon, Yong-Han;Kim, Jong-Yoon
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.84-90
    • /
    • 2019
  • In this study, a fire and evacuation inside an electronic equipment room in environmental energy facilities were conducted and evaluated using a numerical analysis method. In the fire simulation, the visual distance, temperature distribution, and CO concentration distribution were analyzed using FDS. Based on the results, the Pathfinder program, which is an evacuation simulation, was used to calculate the evacuation time of the occupants and derive an evacuation safety evaluation. As a result, the Available safe Egress time (ASET) of P-01 and P-05 was 203.3 and 398.6 s, respectively. For the Required safety Egress time (RSET) results, all evacuees were evacuated at all points and the safety of the evacuee was secured this simulation showed that the safety evaluation is based on the non - operation of the fire - fighting equipment to improve the safety, making it possible to secure better evacuation safety performance owing to the fire of other fire - fighting facilities.

The Case Analysis through Fire Simulation FDS and Evacuation Simulation Pathfinder (화재 시뮬레이션 FDS와 피난시뮬레이션 Pathfinder 사례분석)

  • Kim, Jong Yoon;Jeon, Yong Han
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.6
    • /
    • pp.253-260
    • /
    • 2015
  • In this study, using the FDS as the fire simulation and evacuation simulations of the Pathfinder, set the main control room of the building to the fire point fire safety assessment studies were carried out. At first the quantitative result such as distribution of visibility as time passing, distribution of temperature, distribution of CO density produced results using fire-simulation and evacuation-simulation was carried out based on the result that produced the final safety evaluation result as being calculated of evacuation time. As the risk increased with the distribution of visibility at the result of fire-simulation, evacuation-simulation was carried out using the result. Finally the result was made 127.9 sec that everyone could evacuate. The numerical results are analyzed in case of the places in the building required safe egress time for safety a as the analysis to be no more than available safe egress time was analyzed to be secured. The results of this safety evaluation represent that more smooth evacuation safety performance can be secured by linking the event of fire firefighting equipment as a result of simulating the worst conditions.

  • PDF

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Damper Locationfor Uniform Air Egress Velocity in the case of Two Fire Doors (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 2개 출입문이 존재할 경우 균일한 방연풍속을 얻기 위한 댐퍼 위치 선정방법)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.1-7
    • /
    • 2014
  • Vestibule pressurization system should produce uniform air egress velocity to prevent the intrusion of smoke into escape route when fire accidents occur inside a building and fire doors are open for evacuation of people. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where two doors are installed varying the location of a damper and louver angle. From simulations, we found that when the damper in the vestibule is located at the center of the wall opposite to two fire doors, the uniform air egress velocity can be obtained.

A Study on the Possibility of using BIM in Automated Building Code Checking for Egress and Anti-disaster Regulations for Large-scale Buildings (BIM을 이용한 초대형 건축물 방재 및 피난 관련 법규 자동검토 가능성 연구)

  • Jeong, Ji-Yong;Lee, Ghang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.690-693
    • /
    • 2008
  • Recently, the trend has been for buildings to become larger and more sophisticated, and this has created safety issues. Because the buildings are big it takes lots of time to check building codes related to anti-disaster and safety manually, and there is the high possibility of making mistakes. Due to these problems, according to a study, 83% of architecture and construction workers believe that an automated code-checking system is needed. This study researches past automated code checking systems and research activity, and using Building Information Model (BIM) technology, determines the feasibility of developing a system to automatically check domestic codes related to egress and anti-disaster. This paper describes the necessity of an automated building code checking system and expected effects. It then reports whether the methods used in previous studies can be deployed in domestic building code checking and discusses problems and limitations. It also suggests an alternative approach. Although this study covers limited codes related to egress, we need to find out what is needed for automatic general code checking system and do further studies for that.

  • PDF

Movement Analysis of Elderly People during Ingress/Egress from Different Seat Heights

  • Kim, Yong-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.605-611
    • /
    • 2011
  • Objective: The aim of this study was to investigate the influence of seat heights for optimizing the ingress/egress performance in the elderly people. Background: Recently elderly users have been increasing in number and the ease of ingress/egress of the vehicle becomes an important issue. Method: Seven elderly subjects participated in this study(age: 71.7${\pm}$3.6yr, height: 167.7${\pm}$5.4cm, weight: 68.1${\pm}$11.5kg). Each subject performed the sitting and rising task from comfortable seated position on the chair under the following conditions: (1) with a lumbar support and (2) without a lumbar support. We measured EMG activities of seven muscles(tibialis anterior, soleus, gastrocnemius, vastus lateralis, rectus femoris, biceps femoris and erector supinae) and ranges of motion in lower limb during sitting and standing from three different heights (400mm, 500mm and 600mm from ground) of slide-up seat. Results: Muscle activities and angular movements of hip and knee joints during standing-up and sitting-down with a high seat height(600mm) were reduced mean 30.4% in extensor muscles, 57.11% in flexor muscle, 18.74% in erector muscle and 31.0% in joints compared with a low seat height(400mm). Conclusion: Muscle activities and joint movements in hip and knee were reduced when rising/sitting from a high seat height(600mm) compared with a low seat height(400mm). Application: This study can be used to design vehicle that are easy to get in and out of by older peoples with or without impairments.

Implementation of MPOA for Supporting Various Protocols over ATM (ATM 상에서 다양한 프로토콜을 지원하기 위한 MPOA의 구현)

  • Lim, Ji-Young;Kim, Mi-Hee;Choi, Jeong-Hyun;Lee, Mee-Jeong;Chae, Ki-Joon;Choi, Kil-Young;Kang, Hun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.181-199
    • /
    • 2000
  • In this paper, we implemented and tested MPOA(MutiProtocol Over ATM) standardized in ATM Forum, which provides service for various layer 3 protocols as well as legacy LAN applications over ATM networks. The functions of MPCs(MPOA Clients) and MPSs(MPOA Servers) which are the components in MPOA systems are implemented. MPCs are located at the edge device and MPOA hosts and MPSs exist in routers. The implemented MPCs have the functions such as exchances of primitives between an LEC(LAN Emulation Client) and an MPC, management and maintenance of Egress/Ingress cache, default transmission through LECs and shortcut transmission. Assuming that routing, convergence and NHRP(Next Hop Resolution Protocol) functions exist in routers, the implemented MPSs have the functions such as exchanges of primitives between an LEC and an MPC, conversion and exchanges of frames between MPOA and NHRP, and management and maintenance of Egress/Ingress cache. All of the possible scenarios are made up to test whether they run correctly. The implemented system is tested by simulation according to the scenarios.

  • PDF

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Characteristics of Air Flow in the Vestibule with Multiple Fire Doors in an Apartment Building (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 공동주택 부속실내에 다수 출입문의 존재시 기류특성)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.30-36
    • /
    • 2014
  • The pressurized smoke control system in the vestibule is important for fire safety in buildings because it is concerned with egress time of people and the safety of fire fighters. The vestibule pressurization system can prevent smoke from entering the vestibule using differential pressure when fire doors are closed and using the egress velocity when fire doors are open. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule in order to assure the uniform air egress velocity through a fire door when it is open. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where multiple doors are installed and it was found that the reverse flow occurs when the damper position in vestibule is not appropriate.