• Title/Summary/Keyword: effluent disposal system

Search Result 19, Processing Time 0.026 seconds

STUDIES ON THE MATHEMATICAL KINETICS FOR THE REMOVABLE MOVING SCREEN MEDIA-ACTIVATED SLUDGE PROCESS (회전형 반고정망 활성슬럿지 공법의 수학적 해석에 관한 연구 2. 슬럿지 생산량 및 축적과정과 유출수의 수질에 대하여)

  • HAN Ung-Jun;HAN Yeong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.175-179
    • /
    • 1979
  • One of the major problems in tile activated sludge system has been difficulty in separating the microbial solids from the treated effluent and in returning them to the aeration tank. Another problem has been the digestion of the excess activated sludge. In constrast, it has not been difficult to separate the microbial solids from the treated effluent from the biological fixed-film systems(RBC process, Trickling Filter, FAST process). These systems have also featured less sludge production. Recently, it was proposed to experiment with the RESMAS process in order to eliminate the settling tank and sludge concentration facilities and to reduce the quantity of excess sludge for final disposal. The effluent quality could be predicted by .the concept of the maximum accumulation capacity. However, the hydraulic characteristics of the screen media in the RESMAS reactor were not dynamic. The object of the present study is to evalute the sludge accumulation rate and effluent quality prediction in the REMSMAS process designed in the dynamic hydraulic structure. This process can eliminate the final sedimentation tank and sludge concentration tank needed in the RBC, CMAS, Trickling Filter and FAST processes. Also, the effluent quality is desirable to compare with other processes. It appeared that the value of the sludge holding capacity was higher than those of the RESMAS and FAST processes, and the periods of the critical operating time were proportional to the substrate hydraulic loadings.

  • PDF

MBR technology for textile wastewater treatment: First experience in Bangladesh

  • Saha, Pradip;Hossain, Md. Zakir;Mozumder, Md. Salatul I.;Uddin, Md. Tamez;Islam, Md. Akhtarul;Hoinkis, Jan;Deowan, Shamim A.;Drioli, Enrico;Figoli, Alberto
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.197-205
    • /
    • 2014
  • For the first time in Bangladesh, a bench scale membrane bioreactor (MBR) unit was tested in treating a textile wastewater in the industry premises of EOS Textile Mills LTD, Dhaka for three months. The performance of the unit was compared with that of the conventional activated sludge treatment plant, which is in operation in the same premises. The COD and BOD removal efficiency of the MBR unit reached to around 90% and 80% respectively in 20 days whereas the removal efficiency of the conventional treatment plant was as low as 40-50% and 38-40% respectively. The outlet COD and the BOD level for the MBR unit remained stable in spite of the fluctuation in the feed value, while the conventional effluent treatment plant (ETP) failed to keep any stabilized level. The performance of the MBR unit was much superior to that of the functional ETP and the water treated by the MBR system can meet disposal standard.

State of Swerage Systems and Prospects in Korea (우리 나라의 하수도현황과 전망)

  • 김갑수
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.2
    • /
    • pp.65-84
    • /
    • 1993
  • This study reviewed the current status and problems of sewerage system in Korea and then proposed possible methods to correct the problems. Also, evaluation of future development in sewerage system is included. It can be summarized as follows : 1. Investment in sewerage system is relatively low . 0.23% of GNP, Considering that the investment portion is 0.35% in OECD and 0.63% in Japan, it should be increased further. 2. The reasons wily the investment in sewerage system is low can be ' (1) Low priority is given to the investment in sewerage system. Local government builds and operates its own wastewater treatment plant. Local government as well as residents prefer to invest their money in roadwork, housing and parks to in wastewater treatment facilities because of greater investment effects. (2) Besides capital investment, more maintenance cost is needed for sewerage system. Proper operation of wastewater treatment facilities requires a well-trained operator. Because of public conception that operation of wastewater treatment facility is a dirty job, it is difficult to find a well-trained operator. (3) It is difficult to estimate the effect of sewerage system (4) Cost required to build and maintain wastewater treatment facility should be paid by people, who benefit from the facility. People to benefit are sometimes different from people to pay. 3. Advanced treatment is necessary to protect the bay aura and raw water source as well as to prevent eutrophication of lakes and ponds. 4. Wastewater treatment facility were mainly build in big cities during the decade of 1980. Followings should be solved first to expand the facilities. (1) Rapid repair and construction of sewer. (2) Technical development of wastewater treatment . Prevention of efficient and economical wastewater . Development of efficient and economical wastewater treatment techniques . Development of high-efficiency treatment using bioreactor . Reuse of wastewater treatment plant effluent (3) Sludge treatment and disposal . Composting of sludge cakes . Development of techniques to reduce the volume of sludge cake : incineration and reuse of sludge ash and slag. (4) Utilization of wastewater treatment facilities . Construction of community parks or sports families(ie, on the tops of the covered aeration tanks and sedimention tanks) Construction of wastewater treatment facilities under ground and of parking facilities and community parks above ground. (5) Education of wastewater treatment personal.

  • PDF

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

Application of Adsorption Characteristic of Ferrous Iron Waste to Phosphate Removal from Municipal Wastewater (폐산화철의 흡착특성을 이용한 도시하수내 인 처리)

  • Kim, Jin-Hyung;Lim, Chae-Sung;Kim, Keum-Yong;Kim, Dae-Keun;Lee, Sang-Ill;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • This study proposed the method of phosphate recovery from municipal wastewater by using ferrous iron waste, generated from the mechanical process in the steel industry. In the analysis of XRD, ferrous iron waste was composed of $Fe_3O_4$ (magnetite), practically with $Fe^{2+}$ and $Fe^{3+}$. It had inverse spinel structure. In order to identify the adsorption characteristic of phosphate on ferrous iron waste, isotherm adsorption test was designed. Experimental results were well analyzed by Freundlich and Langmuir isotherm theories. Empirical constants of all isotherms applied increased with alkalinity in the samples, ranging from 1.2 to 235 $CaCO_3/L$. In the regeneration test, empirical constants of Langmuir isotherm, i.e., $q_{max}$ (maximum adsorption capacity) and b (energy of adsorption) decreased as the frequency of regeneration was increased. Experiment was further performed to evaluate the performance of the treatment scheme of chemical precipitation by ferrous iron waste followed by biological aerated filter (BAF). The overall removal efficiency in the system increased up to 80% and 90% for total phosphate (TP) and soluble phosphate (SP), respectively, and the corresponding effluent concentrations were detected below 2 mg/L and 1 mg/L for TP and SP, respectively. However, short-circuit problem was still unsolved operational consideration in this system. The practical concept applied in this study will give potential benefits in achieving environmentally sound wastewater treatment as well as environmentally compatible waste disposal in terms of closed substance cycle waste management.

Development of Screening Technology for Marine Waste Disposal (수산폐기물 전처리 용 스크린기술 개발)

  • Moon, Serng-Bae;Jun, Seung-Hwan;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.57-63
    • /
    • 2009
  • In order to effectively isolate the marine wastes with an effluent standard, the pretreatment process is required to isolate solid materials from the liquid-solid mixed wastes. The more effective the pretreatment becomes, the more processing capacity of posttreatment will be improved and process facilities will be downsized. In this paper, we suggested the vibrating reverse-slant screen, investigated the optimal vibration frequency and vibrator installation angle for the separation of the liquid solid mixed wastes. Several experiments for separation efficiency were conducted under the condition of various vibration frequency($35{\sim}60Hz$, 5Hz interval) and vibrator angle($0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $90^{\circ}$) considering the crack of screen. The screen inclination angle is set up the gradient as $3^{\circ}{\sim}5^{\circ}$ through the preliminary experiments. Also, we made two types of screen(respectively rectangle and square screen). The separation device has shown the optimum efficiency at vibrator angle $0^{\circ}$ and vibration frequency 60Hz, and has no relation with the shape of screen. And the proposed technology is verified by comparing with quantity of suspended solids before and after filtration.

Aquaculture Recycling Effluent from a Pond System Treating Animal Excreta Ecologically (축산폐수 처리 연못시스템의 처리수 재활용 양어)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2000
  • Utilization of animal excreta in aquaculture can have potentials of high fish production and low maintenance costs for fish farming and it can reduce water pollution caused by animal waste disposal. Integration of wastewater treatment pond system with aquaculture has been utilized in many countries. Ecologically balanced pond ecosystem is formed through the stabilization of wastes, the growth of aquatic plants, and the cultivation of fish. The most appropriate fish for rearing in these ponds are those which can feed directly on phytoplankton, especially algae. Carp were introduced into a tertiary pond - water depth of 2.2 m, water surface area of $130\;m^2$, volume of $148\;m^3$ - of a pond system treating milk cow excreta. The carp production was $125g{\cdot}m^{-2}year^{-1}$ which falls into upper range of $18\;-\;137g{\cdot}m^{-2}year^{-1}$ of treated sewage-fed carp farming of other countries. Average $BOD_5$ and T-N of the pond was 19.8 and $21.0\;mg{\cdot}L^{-1}$ respectively, and the ecological environment of it was suitable for growth of carp. Several carp of 100g were introduced in August into a secondary pond of the treatment system, whose average $BOD_5$ and T-N was 27.9 and $30.8\;mg{\cdot}L^{-1}$ respectively. They were died within one week, which may be attributed to the depletion of dissolved oxygen at dawn. Effluents from primary treatment can be used in fish pond with dilution and those from secondary treatment can be directly funnelled into it. Waste stabilization pond treating animal excreta can be utilized for fish rearing when its water quality maintains secondary treatment level.

  • PDF

Development of integrated microbubble and microfilter system for liquid fertilizer production by removing total coliform and improving reduction of suspended solid in livestock manure (가축분뇨 내 대장균 제거와 부유물질 저감 효율 향상을 통한 추비 생산용 미세기포 부상분리와 마이크로 필터 연계 시스템 개발)

  • Jang, Jae Kyung;Lee, Donggwan;Paek, Yee;Lee, Taeseok;Lim, Ryu Gap;Kim, Taeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.139-147
    • /
    • 2021
  • Livestock manure is used as an organic fertilizer to replace chemical fertilizers after sufficient fermentation in an aerobic bioreactor. On the other hand, liquid manure disposal problems occur repeatedly because soil spraying is restricted during the summer when the crops are growing. To use liquid fertilizer (LF) as an additional nutrient source for crops, it is necessary to reduce the amount of suspended solids (SS) in the liquid fertilizer and secure stability problems against pathogenic microorganisms. This study examined the effects of the simultaneous SS removal and E.coli sterilization in the LF using the microbubble (MB) generator (FeMgO catalyst insertion). The remaining SS were further removed using the integrated microbubble and microfilter system. During the floating process in the MB device, the SS were removed by 57.9%, and the coliform group was not detected (16,200→0 MPN/100 mL). By optimizing the HRT of the integrated system, the removal efficiency of the SS was improved by 92.9% under the 0.1h of HRT condition. After checking the properties of the treated LF, 64.5%, 70.1%, 54.9%, and 51.5% of the TCOD, SCOD, PO4-P, and TN, respectively, were removed. The treated effluent from such an integrated system has a lower SS content than that of the existing LF and does not contain coliforms; therefore, it can be used directly as an additional fertilizer.

The Effect of Reclaimed Sewage Irrigation on the Rice Cultivation (벼 재배시 생활오수 처리수 관개 효과)

  • Yoon, Chun-Gyeong;Kwun, Soon-Kuk;Chung, Ill-Min;Kwon, Tae-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.236-244
    • /
    • 1999
  • A feasibility study was performed to examine the agronomic application of treated sewage on paddy rice culture by field experiment. The domestic sewage was treated by the constructed wetland system which was in subsurface flow type and consisted of sand and macrophyte. The effluent of the wetland system was adjusted to maintain the total nitrogen concentration below $25mgL^{-1}$ and used for irrigation water. Four treatments include (1) irrigation of treated sewage after concentration adjusted with conventional fertilization (TWCF), (2) irrigation of treated sewage after concentration adjusted with half of the conventional fertilization (TWHF), (3) irrigation of treated sewage after concentration adjusted without fertilization (TWNF), and (4) irrigation of treated sewage as it was without fertilization (SWNF). These cases were compared to the control case of tap water irrigation with conventional fertilization (Control). Generally, addition of the treated sewage to the irrigation water showed no adverse affect on paddy rice culture, and even improvement was noticed in both growth and yields. TWCF showed the best result and the yields exceed the Control in about 10%. Overall performance of the treatments was TWCF, Control, TWHF, TWNF, and SWNF in decreasing order. From this study, it appears that reuse of treated sewage as a supplemental irrigation water could be feasible and practical alternative for ultimate sewage disposal which often causes water quality problem to the receiving water body. For full scale application, further study is recommended on the specific guidelines of major water quality components and public health.

  • PDF