• Title/Summary/Keyword: efficiency of input energy

Search Result 489, Processing Time 0.031 seconds

Design of New LED Drive using Energy Recovery Circuit (에너지 회수 회로를 이용한 새로운 LED 구동드라이브 설계)

  • Han, Man-Seung;Lim, Sang-Kil;Park, Sung-Jun;Lee, Sang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.9-17
    • /
    • 2011
  • The high-power LED (Light Emitting Diode) which is recently gaining popularity as a digital light source has such advantages as low power consumption, long life, fast switching speed, and high efficiency. Thus, many efforts are being made to use the high-power LEDs for general lighting. This paper proposes LED driving circuit uses a DC/DC converter that can recover energy to compensate for the current variations caused by changes in LED equivalent resistance following a temperature change instead of serial resistance. The maximum input voltage of this DC/DC converter has low voltage variations by temperature change when the rated current is formed. In order to return current to the input side, we need a high boosting at low power. Thus, to improve the low efficiency of power converter, the power converter can be configured in such a way to gather the powers of low-capacity DC/DC converters and return the total power. Experiments showed that the proposed system improved efficiency compared to the conventional LED drive using the existing DC/DC converter.

Integrated design method of suction muffler in compressor (압축기 흡입 머플러 통합적 설계 방안)

  • Wang, Semyung;Oh, Seungjae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.771-772
    • /
    • 2014
  • In this paper, the integrated design method of suction muffler in compressor was studied. There are three things to consider when designing this. First, the transmission loss was maximized to consider the noise reduction. Second, dissipation energy of fluid flow was minimized for energy efficiency. Finally, acoustical resonance frequency of suction muffler was controlled because energy efficiency can be increased by supercharging of refrigerant. Therefore, suction muffler was designed to have the specific resonance frequency. The input impedance was used for designing target acoustical resonance frequency. Topology optimization was used for optimization method.

  • PDF

Operation Characteristics of a Plasma Reformer for Biogas Direct Reforming (바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구)

  • Byungjin Lee;Subeen Wi;Dongkyu Lee;Sangyeon Hwang;Hyoungwoon Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.404-411
    • /
    • 2023
  • For the direct reforming of biogas, a three-phase gliding arc plasma reformer was designed to expand the plasma discharge region, and the operation conditions of the plasma reformer, such as the S/C ratio, the gas flow rate, and the plasma input power, were optimized. The H2 production efficiency is increased at a lower specific plasma input energy density, but byproducts such as CXHY and carbon soot are generated along with the increase in H2 production efficiency. The formation of byproducts is decreased at higher specific plasma input energy densities and S/C ratios. The optimized operation conditions are 5.5 ~ 6.0 kJ/L for the specific plasma input energy density and 3 for the S/C ratio, considering the conversion efficiency, H2 production, and byproduct formation. It is expected that the H2 production efficiency will improve with the decrease in fuel consumption in biogas burners because the heat generated from plasma discharge heats up the feed gas to over 500 ℃.

A Design of High Efficiency Microwave Wireless Power Acceptor IC (고효율 마이크로파 무선 전력 수신 집적회로 설계 및 구현)

  • Jung, Won-Jae;Jung, Hyo-Bin;Kim, Sang-Kyu;Jang, Jong-Eun;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1125-1131
    • /
    • 2013
  • Wireless power transmission technology has been studied variety. Recently, wireless power transmission technology used by resonance and magnetic induction field is applied to various fields. However, magnetic resonance and inductive coupling are have drawbacks - power transmission distance is short. Microwave transmission and accept techniques have been developed to overcome short distance. However, improvement in efficiency is required. This paper, propose a high-efficiency microwave energy acceptor IC(EAIC). Suggested EAIC is consists of RF-DC converter and DC-DC converter. Wide Input power range is -15 dBm ~ 20 dBm. And output voltage is boosted up to 5.5 V by voltage boost-up circuit. EAIC can keep the output voltage constant. Available efficiency of RF-DC converter is 95.5 % at 4 dBm input. And DC-DC efficiency is 94.79 % at 1.1 mA load current. Fully EAIC efficiency is 90.5 %.

Nonorthogonal multiple access multiple input multiple output communications with harvested energy: Performance evaluation

  • Toi Le-Thanh;Khuong Ho-Van
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.432-445
    • /
    • 2024
  • This paper demonstrates improved throughput and energy efficiency of wireless communications by exploiting nonorthogonal multiple access (NOMA), multiple input-multiple output (MIMO), and radio frequency energy harvesting (EH) technologies. To assess the performance of NOMA MIMO communications with EH (MMe), we consider the nonlinear characteristics of EH devices and propose explicit expressions for throughput and outage probability. Based on our results, the system performance is significantly mitigated by EH nonlinearity and is considerably improved by increasing the number of antennas. Additionally, by appropriately adjusting the system parameters, our NOMA MMe innovation can avert complete outages while optimizing system performance. Moreover, the results demonstrate the superiority of the NOMA MMe over its orthogonal multiple access MMe counterparts.

A Study on PFC AC-DC Converter of High Efficiency added in Electric Isolation (절연형 고효율 PFC AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Roan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1349-1355
    • /
    • 2009
  • This paper is studied on a novel power factor correction (PFC) AC-DC converter of high efficiency by soft switching technique. The input current waveform in the proposed converter is got to be a sinusoidal form composed of many a discontinuous pulse in proportion to the magnitude of a ac input voltage under the constant switching frequency. Therefore, the input power factor is nearly unity and the control method is simple. The proposed converter adding an electric isolation operates with a discontinuous current mode (DCM) of the reactor in order to obtain some merits of simpler control, such as fixed switching frequency, without synchronization control circuit used in continuous current mode (CCM). To achieve the soft switching (ZCS or ZVS) of control devices, the converter is constructed with a new loss-less snubber for a partial resonant circuit. It is that the switching losses are very low and the efficiency of the converter is high, Particularly, the stored energy in a loss-less snubber capacitor recovers into input side and increases input current from a resonant operation. The result is that the input power factor of the proposed converter is higher than that of a conventional PFC converter. This paper deals mainly with the circuit operations, theoretical, simulated and experimental results of the proposed PFC AC-DC converter in comparison with a conventional PFC AC-DC converter.

Distortion Elimination for Buck PFC Converter with Power Factor Improvement

  • Xu, Jiangtao;Zhu, Meng;Yao, Suying
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.10-17
    • /
    • 2015
  • A quasi-constant on-time controlled buck front end in combined discontinuous conduction mode and boundary conduction mode is proposed to improve power factor (PF).When instantaneous AC input voltage is lower than the output bus voltage per period, the buck converter turns into buck-boost converter with the addition of a level comparator to compare input voltage and output voltage. The gate drive voltage is provided by an additional oscillator during distortion time to eliminate the cross-over distortion of the input current. This high PF comes from the avoidance of the input current distortion, thereby enabling energy to be delivered constantly. This paper presents a series analysis of controlling techniques and efficiency, PF, and total harmonic distortion. A comparison in terms of efficiency and PF between the proposed converter and a previous work is performed. The specifications of the converter include the following: input AC voltage is from 90V to 264V, output DC voltage is 80V, and output power is 94W.This converter can achieve PF of 98.74% and efficiency of 97.21% in 220V AC input voltage process.

Low-Power Buck-Boost Converter for Multi-Input Energy Harvesting Systems (다중입력 에너지 하베스팅 시스템을 위한 저전력 벅-부스트 변환기)

  • Jo, Gil-Je;Kwak, Myoung-Jin;Im, Ju-An;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.31-34
    • /
    • 2018
  • This paper presents a low-power buck-boost converter for multi-input energy harvesting systems. The designed circuit combines the energy harvested from three input channels in real time and stores it in a storage capacitor. The structure of the buck-boost converter is simplified by using one external inductor and applying time division technique using an arbiter. In addition, to improve the efficiency of the system, the controller circuits of the converter are designed so that current consumption is minimized. The proposed circuit is designed with $0.35{\mu}m$ CMOS process. Simulation results show that the designed circuit consumes up to 490nA of current when all three input channels are active, and the maximum power efficiency is 92%. The chip area of the designed circuit is $1310{\mu}m{\times}1100{\mu}m$.

  • PDF

A two-stage Kalman filter for the identification of structural parameters with unknown loads

  • He, Jia;Zhang, Xiaoxiong;Feng, Zhouquan;Chen, Zhengqing;Cao, Zhang
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.693-701
    • /
    • 2020
  • The conventional Kalman Filter (KF) provides a promising way for structural state estimation. However, the physical parameters of structural systems or models should be available for the estimation. Moreover, it is not applicable when the loadings applied to the structures are unknown. To circumvent the aforementioned limitations, a two-stage KF with unknown input approach is proposed for the simultaneous identification of structural parameters and unknown loadings. In stage 1, a modified observation equation is employed. The structural state vector is estimated by KF on the basis of structural parameters identified at the previous time-step. Then, the unknown input is identified by Least Squares Estimation (LSE). In stage 2, based on the concept of sensitivity matrix, the structural parameters are updated at the current time-step by using the estimated structural states obtained from stage 1. The effectiveness of the proposed approach is numerically validated via a five-story shearing model under random and earthquake excitations. Shaking table tests on a five-story structure are also employed to demonstrate the performance of the proposed approach. It is demonstrated from numerical and experimental results that the proposed approach can be used for the identification of parameters of structure and the external force applied to it with acceptable accuracy.

A Study on Energy Saving of the Motor Cooling System with an Inverter (INVERTER를 응용한 MOTOR 냉각 제어시스템의 전력절감에 관한 연구)

  • Kim, Ki-Hong;Jung, Jee-Hoon;Kwon, Bong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.611-613
    • /
    • 2004
  • This paper is concerned with the simulation and determination of the input voltage and frequency for the optimal efficiency operation of induction motors. In general, induction motors have a specific character that operation efficiency is dropped sharply at the light roads condition. Consequently, if the induction motor is controlled by high efficiency using the VVVF(variable voltage variable frequency) control methods at optimal values, the entire system can obtain the substantial energy savings from the efficiency improvement in induction motors. In this paper, optimal slip is derived from the modeling of an induction motor and the optimal hybrid-control method is suggested by the simulation of the proposed algorithm for a 3-phase induction motor.

  • PDF