• Title/Summary/Keyword: efficiency map

Search Result 669, Processing Time 0.024 seconds

The Ongoing Effect of Transcranial Direct Current Stimulation on both the Hemispheres: Single Case fMRI Study

  • Kwon, Jung-Won;Son, Sung-Min;Kim, Chung-Sun;Cho, In-Sul
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.6
    • /
    • pp.49-53
    • /
    • 2011
  • Purpose: The purpose of this study is to investigate whether dual-hemisphere transcranial direct current stimulation (tDCS) could induce more cortical activity, compared to single-hemisphere, using functional MRI (fMRI). Methods: One right-handed healthy subject was recruited. Three phases of dual-hemisphere tDCS (i.e. anodal tDCS over the left-dominant primary sensoriomotor cortex (SM1) and cathodal tDCS over the right-non dominant SM(1) were consecutively delivered on to a subject, during fMRI scanning. The voxel count and the intensity index in the averaged cortical map were analyzed among the three tDCS phases. Results: Our result showed that cortical activation was observed on all the three phases of the dual-hemisphere tDCS. Voxel count and intensity index were as following; 912 and 4.07 in the first phase, 1102 and 3.90 in the second phase, 1031 and 3.80 in the third phase. Conclusion: This study demonstrated that application of the dual-hemisphere tDCS could induce cortical activity and maintain to recruit cortical neurons. Our findings suggested that application of dual-hemisphere tDCS could produce efficiency of the ongoing tDCS effect to facilitate cortical excitability.

Robust Image Similarity Measurement based on MR Physical Information

  • Eun, Sung-Jong;Jung, Eun-Young;Park, Dong Kyun;Whangbo, Taeg-Keun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4461-4475
    • /
    • 2017
  • Recently, introduction of the hospital information system has remarkably improved the efficiency of health care services within hospitals. Due to improvement of the hospital information system, the issue of integration of medical information has emerged, and attempts to achieve it have been made. However, as a preceding step for integration of medical information, the problem of searching the same patient should be solved first, and studies on patient identification algorithm are required. As a typical case, similarity can be calculated through MPI (Master Patient Index) module, by comparing various fields such as patient's basic information and treatment information, etc. but it has many problems including the language system not suitable to Korean, estimation of an optimal weight by field, etc. This paper proposes a method searching the same patient using MRI information besides patient's field information as a supplementary method to increase the accuracy of matching algorithm such as MPI, etc. Unlike existing methods only using image information, upon identifying a patient, a highest weight was given to physical information of medical image and set as an unchangeable unique value, and as a result a high accuracy was detected. We aim to use the similarity measurement result as secondary measures in identifying a patient in the future.

Extended kernel correlation filter for abrupt motion tracking

  • Zhang, Huanlong;Zhang, Jianwei;Wu, Qinge;Qian, Xiaoliang;Zhou, Tong;FU, Hengcheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4438-4460
    • /
    • 2017
  • The Kernelized Correlation Filters (KCF) tracker has caused the extensive concern in recent years because of the high efficiency. Numerous improvements have been made successively. However, due to the abrupt motion between the consecutive image frames, these methods cannot track object well. To cope with the problem, we propose an extended KCF tracker based on swarm intelligence method. Unlike existing KCF-based trackers, we firstly introduce a swarm-based sampling method to KCF tracker and design a unified framework to track smooth or abrupt motion simultaneously. Secondly, we propose a global motion estimation method, where the exploration factor is constructed to search the whole state space so as to adapt abrupt motion. Finally, we give an adaptive threshold in light of confidence map, which ensures the accuracy of the motion estimation strategy. Extensive experimental results in both quantitative and qualitative measures demonstrate the effectiveness of our proposed method in tracking abrupt motion.

Characteristics of Combustion Radical in CNG Direct Injection Vessel (CNG 직접분사식 연소기에서의 연소 라디칼 특성)

  • 최승환;조승완;이석영;정동수;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.58-65
    • /
    • 2004
  • A cylindrical constant volume combustion chamber was used to investigate the combustion characteristics of stratified methane-air mixture under several initial charge conditions in the author's previous reports. The results showed that the improvement of thermal efficiency and reduction of heat loss was realized simultaneously by using 2-stage injection method. This paper deals with the reason why the stratified combustion has showed better combustion rate through the measurement and analysis of chemiluminescence of C $H^{*}$ and $C_{2}$$^{*}$ radicals. An optic fiber bundle is used to measure the local emission of C $H^{*}$ and $C_{2}$$^{*}$ radicals to map the relationship between the excess air ratio and local radical intensity ratio in the combustion vessel at 5 mm apart form the geometric center. The results show that there exist a relationship between the intensity ratio and the air-fuel ratio. It is revealed that the improvement of combustion rate in a lean-stratified mixture is realized through the 2-stage injection method. method.

Performance Evaluation of the Gas Turbine for Integrated Ossification Combined Cycle (석탄가스화 복합발전용 가스터빈의 성능 평가)

  • Lee, Chan;Lee, Jin-Wook;Yun, Yong-Seung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.7-14
    • /
    • 1999
  • This simulation method is developed by using GateCycle code for the performance evaluation of the gas turbine in IGCC(Integrated Gasification Combined Cycle) power plant that uses clean coal gas fuel derived from coal gasification and gas clean-up processes and it is integrated with ASU(Air Separation Unit). In the present simulation method, thermodynamic calculation procedure is incorporated with compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. With the clean coal gases produced through commercially available chemical processes, their compatibility as IGCC gas turbine fuel is investigated in the aspects the overall performance of the gas turbine system. The predictions by the present method show that the reduction of the air extraction from gas turbine to ASU results in a remarkable increase in the efficiency and net power of gas turbines, but it is accompanied with a shift of compressor operation point toward to surge limit. In addition, the present analysis results reveal the influence of compressor performance characteristics of gas turbine have to be carefully examined in designing the ASU integration process and evaluating the overall performance parameters of the gas turbine in IGCC Power plant.

  • PDF

Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.269-284
    • /
    • 2016
  • Simplified techniques based on in situ testing methods are commonly used to assess seismic liquefaction potential. Many of these simplified methods were developed by analyzing liquefaction case histories from which the liquefaction boundary (limit state) separating two categories (the occurrence or non-occurrence of liquefaction) is determined. As the liquefaction classification problem is highly nonlinear in nature, it is difficult to develop a comprehensive model using conventional modeling techniques that take into consideration all the independent variables, such as the seismic and soil properties. In this study, a modification of the Multivariate Adaptive Regression Splines (MARS) approach based on Logistic Regression (LR) LR_MARS is used to evaluate seismic liquefaction potential based on actual field records. Three different LR_MARS models were used to analyze three different field liquefaction databases and the results are compared with the neural network approaches. The developed spline functions and the limit state functions obtained reveal that the LR_MARS models can capture and describe the intrinsic, complex relationship between seismic parameters, soil parameters, and the liquefaction potential without having to make any assumptions about the underlying relationship between the various variables. Considering its computational efficiency, simplicity of interpretation, predictive accuracy, its data-driven and adaptive nature and its ability to map the interaction between variables, the use of LR_MARS model in assessing seismic liquefaction potential is promising.

Suitable Health Pattern Type Mapping Techniques in Body Mass Index

  • Shin, Yoon-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • In this paper, we propose a technique that can be mapped to the most appropriate type of health patterns, depending on the health status of health promotion measures to establish a body mass index (BMI). When used as a mapping scheme proposed in this paper it is possible to contribute to effective healthcare and health promotion. BMI is widely used as a simple way to assess obesity because body fat increases the status and relevance. Despite normal weight determined by this and because of the social atmosphere has increased prefer the skinny tend to try to excessive weight loss. Since health can affect the health maintenance and promotion of the rest of your life, depending on whether and how much weight perception and health can be considered as very important. Therefore, this paper identifies the differences in perception and in this respect for the body mass index (BMI). And physical, mental and map the appropriate type of pattern in the relationship between body mass index (BMI) in order to facilitate the social and health conditions. Proposal to give such a mapping technique provides the opportunity to increase the efficiency of health care and health promotion.

Universal Design of Hangul Input Method for Mobile Phones (모바일 폰 한글입력방식의 유니버셜 디자인에 관한 연구)

  • Hong, Seung-Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.117-124
    • /
    • 2007
  • A few people are frequently using Korean text entry function in the mobile phone. To make matters worse, too many kinds of Korean text entry methods exist in the market, compelling mobile phone users to learn how to input texts all over again, whenever they purchase a new mobile phone. The purpose of this study is to propose a universal design of Korean text entry method for mobile phones. Several experiments and several questionnaire surveys were conducted in order to induce design factors for the universal design. Participants were mobile phone users with the diverse levels of text entry expertise and with the diverse ages. The results of this investigation were identical, irrespective of participants' age and expertise. The efficiency of the text entry method was not more important factor than memorability. The layout of vowels to keypad was preferred to map just 3 strokes to the 3 buttons so that users can make for themselves vowels that they want to input. The preference on the consonants layout was different according to investigation methods. According to the survey, it was preferred that consonants were arranged by alphabet order. However, the result of text entry speed measurement was that the arrangement by alphabet order was not superior to the typical arrangement. Such results may be used to design mobile phones for diverse users.

CLB-Based CPLD Technology Mapping Algorithm for Power Minimization under Time Constraint (시간 제약 조건 하에서 저전력을 고려한 CLB구조의 CPLD 기술 매핑 알고리즘)

  • Kim, Jae-Jin;Kim, Hui-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.84-91
    • /
    • 2002
  • In this paper, we proposed a CLB-based CPLD technology mapping algorithm for power minimization under time constraint in combinational circuit. The main idea of our algorithm is to exploit the "cut enumeration and feasible cluster" technique to generate possible mapping solutions for the sub-circuit rooted at each node. In our technology mapping algorithm conducted a low power by calculating TD and EP of each node and decomposing them on the circuit composed of DAG. It also takes the number of input, output, and OR-term into account on condition that mapping can be done up to the base of CLB, and so it generates the feasible clusters to meet the condition of time constraint. Of the feasible clusters, we should first be mapping the one that h3s the least output for technology mapping of power minimization and choose to map the other to meet the condition of time constraint afterwards. To demonstrate the efficiency of our approach, we applied our algorithm to MCNC benchmarks and compared the results with those of the exiting algorithms. The experimental results show that our approach is shown a decrease of 46.79% compared with DDMAP and that of 24.38% for TEMPLA in the power consumption.

Extracting Graphics Information for Better Video Compression

  • Hong, Kang Woon;Ryu, Won;Choi, Jun Kyun;Lim, Choong-Gyoo
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.743-751
    • /
    • 2015
  • Cloud gaming services are heavily dependent on the efficiency of real-time video streaming technology owing to the limited bandwidths of wire or wireless networks through which consecutive frame images are delivered to gamers. Video compression algorithms typically take advantage of similarities among video frame images or in a single video frame image. This paper presents a method for computing and extracting both graphics information and an object's boundary from consecutive frame images of a game application. The method will allow video compression algorithms to determine the positions and sizes of similar image blocks, which in turn, will help achieve better video compression ratios. The proposed method can be easily implemented using function call interception, a programmable graphics pipeline, and off-screen rendering. It is implemented using the most widely used Direct3D API and applied to a well-known sample application to verify its feasibility and analyze its performance. The proposed method computes various kinds of graphics information with minimal overhead.