References
- Andrus, R.D. and Stokoe, K.H. (2000), "Liquefaction resistance of soils from shear-wave velocity", J. Geotech. Geoenviron., 126(11), 1015-1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)
- Atign, E. and Byrne, P.M. (2004), "Liquefaction flow of submarine slopes under partially undrained conditions: an effective stress approach", Can. Geotech. J., 41(1), 154-165. https://doi.org/10.1139/t03-079
- Attoh-Okine, N.O., Cooger, K. and Mensah, S. (2009), "Multivariate adaptive regression spline (MARS) and hinged hyper planes (HHP) for doweled pavement performance modeling", Constr. Build. Mater., 23(9), 3020-3023. https://doi.org/10.1016/j.conbuildmat.2009.04.010
- Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984), Classification and Regression Trees, Wadsworth & Brooks, Monterey, CA, USA.
- Cetin, K.O., Seed, R.B., Der Kiureghian, A.K., Tokimatsu, K., Harder, L.F. Jr., Kayen, R.E. and Moss, R.E.S. (2004), "Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential", J. Geotech. Geoenviron., 130(12), 1314-1340. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314)
- Chen, Y., Liu, H. and Wu, H. (2013), "Laboratory study on flow characteristic of liquefied and postliquefied sand", Eur. J. Environ. Civil Eng., 17, 23-32. https://doi.org/10.1080/19648189.2013.834583
- Chen, Y., Xu, C., Liu, H. and Zhang, W. (2015), "Physical modeling of lateral spreading induced by inclined sandy foundation in the state of zero effective stress", Soil Dyn. Earthq. Eng., 76, 80-85. https://doi.org/10.1016/j.soildyn.2015.04.001
- Chern, S.G., Lee, C.Y. and Wang, C.C. (2008), "CPT-based liquefaction assessment by using fuzzy-neural network", J. Mar. Sci. Technol., 16(2), 139-148.
- Duman, E.S., Ikizier, S.B., Angin, Z. and Demir, G. (2014), "Assessment of liquefaction potential of the Erzincan, Eastern Turkey", Geomech. Eng., Int. J., 7(6), 589-612. https://doi.org/10.12989/gae.2014.7.6.589
- Friedman, J.H. (1989), "Regularized discriminant analysis", J. Am. Stat. Assoc., 84(405), 165-175. https://doi.org/10.1080/01621459.1989.10478752
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat.,19, 1-141. https://doi.org/10.1214/aos/1176347963
- Goh, A.T.C. (2002), "Probabilistic neural network for evaluating seismic liquefaction potential", Can. Geotech. J., 39(1), 219-232. https://doi.org/10.1139/t01-073
- Goh, A.T.C. and Zhang, W.G. (2014), "An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines", Eng. Geol., 170, 1-10. https://doi.org/10.1016/j.enggeo.2013.12.003
- Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference and Prediction, (2nd Edition), Springer-Verlag, New York, NY, USA.
- Jekabsons, G. (2010), VariReg: A Software Tool for Regression Modelling using Various Modeling Methods, Riga Technical University, Latvia. URL: http://www.cs.rtu.lv/jekabsons/
- Juang, C.H., Rosowsky, D.V. and Tang, W.H. (1999), "Reliability-based method for assessing liquefaction potential of soils", J. Geotech. Geoenviron., 125(8), 684-689. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(684)
- Juang, C.H., Yuan, H., Lee, D.H. and Lin, P.S. (2003), "Simplified cone penetration test-based method for evaluating liquefaction resistance of soils", J. Geotech. Geoenviron., 129(1), 66-80. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(66)
- Lade, P.V. and Yamamuro, J.A. (2011), "Evaluation of static liquefacion potential of silty sand slopes", Can. Geotech. J., 48(2), 247-264. https://doi.org/10.1139/T10-063
- Lai, S.Y., Hsu, S.C. and Hsieh, M.J. (2004), "Discriminant model for evaluating soil liquefaction potential using cone penetration test data", J. Geotech. Geoenviron., 130(12), 1271-1282. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1271)
- Lancelot, L., Shahrour, I. and Mahmoud, M.A. (2004), "Instability and static liquefaction on proportional strain paths for sand at low stresses", J. Eng. Mech., 130(11), 1365-1372. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1365)
- Lashkari, A. (2012), "Prediction of the shaft resistance of non-displacement piles in sand", Int. J. Numer. Anal. Met., 38(7), 904-931.
- Law, K.T., Cao, Y.L. and He, G.N. (1990), "An energy approach for assessing seismic liquefaction potential", Can. Geotech. J., 27(3), 320-329. https://doi.org/10.1139/t90-043
- Liao, S.C., Veneziano, D. and Whitman, R.V. (1988), "Regression models for evaluating liquefaction probability", J. Geotech. Eng., 114(4), 389-411. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:4(389)
- Liu, H., Chen, Y.M., Yu, T. and Yang, G. (2014), "Seismic analysis of the Zipingpu concrete-faced rockfill dam response to the 2008 Wenchuan, China, Earthquake", J. Perform. Constr. Facil., 29(5), 0401429. DOI: 10.1061/(ASCE)CF.1943-5509.0000506
- Marchetti, S. (1982), "Detection of liquefiable sand layers by means of quasi-static penetration tests", Proceedings of the 2nd European Symposium on Penetration Testing, Volume 2, Amsterdam, The Netherlands, May, pp. 458-482.
- Mirzahosseini, M., Aghaeifar, A., Alavi, A., Gandomi, A. and Seyednour, R. (2011), "Permanent deformation analysis of asphalt mixtures using soft computing techniques", Expert. Syst. Appl., 38(5), 6081-6100. https://doi.org/10.1016/j.eswa.2010.11.002
- Moss, R.E.S., Seed, R.B., Kayen, R.E., Stewart, J.P., Der Kiureghian, A.K. and Cetin, K.O. (2006), "CPTbased probabilistic and deterministic assessment of in situ seismic soil liquefaction potential", J. Geotech. Geoenviron., 132(8), 1032-1051. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(1032)
- Muduli, P.K. and Das, S.K. (2014a), "CPT-based seismic liquefaction potential evaluation using multi-gene genetic programming approach", Ind. Geotech. J., 44(1), 86-93. https://doi.org/10.1007/s40098-013-0048-4
- Muduli, P.K. and Das, S.K. (2014b), "Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model", Acta. Geophys., 62(3), 529-543. https://doi.org/10.2478/s11600-013-0181-6
- Muduli, P.K., Das, S.K. and Bhattacharya, S. (2014), "CTP-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming", Georisk, 8(1), 14-28. https://doi.org/10.1080/17499518.2013.845720
- Robertson, P.K. (1990), "Soil classification using the cone penetration test",Can.Geotech. J., 27(1), 151-158. https://doi.org/10.1139/t90-014
- Robertson, P.K. and Wride, C.E. (1998), "Evaluating cyclic liquefaction potential using the cone penetration test", Can. Geotech. J., 35(3), 442-459. https://doi.org/10.1139/t98-017
- Samui, P. (2011), "Determination of ultimate capacity of driven piles in cohesionless soil: A multivariate adaptive regression spline approach", Int. J. Numer. Anal. Method. Geomech., 36(11), 1434-1439. https://doi.org/10.1002/nag.1076
- Samui, P. and Karup, P. (2011), "Multivariate adaptive regression spline and least square support vector machine for prediction of undrained shear strength of clay", Int. J. Appl. Metaheur. Comput., 3(2), 33-42. https://doi.org/10.4018/jamc.2012040103
- Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", Soil Mech. Found. Eng., 97(9), 1249-1273.
- Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., 111(12), 861-878.
- Specht, D. (1990), "Porbabilistic neural networks", Neural Networks, 3(1), 109-118. https://doi.org/10.1016/0893-6080(90)90049-Q
- Stark, T.D. and Olson, S.M. (1995), "Liquefaction resistance using CPT and field case histories", J. Geotech. Eng., 121(12), 856-869. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(856)
- Tosun, H., Seyrek, E., Orhan, A., Savas, H. and Turkoz, M. (2011), "Soil liquefaction potential in Eskisehir, NW Turkey", Nat. Hazard Earth Syst., 11, 1071-1082. https://doi.org/10.5194/nhess-11-1071-2011
- Toyota, H., Towhata, I., Imamura, S. and Kudo, K. (2004), "Shaking table tests on flow dynamics in liquefied slope", Soils Found., 44(5), 67-84. https://doi.org/10.3208/sandf.44.5_67
- Vapnik, V., Golowich, S. and Smola, A. (1997), "Support vector method for function approximation, regression estimation, and signal processing", Adv. Neural Inform. Process. Syst., 9, 281-287.
- Youd, T.L., Idriss, I., Andrus, R., Arango, I., Castro, G., Christian, J., Dobry, R., Finn, W., Harder, L. Jr., Hynes, M., Ishihara, K., Koester, J., Liao, S., Marcuson, W. III, Martin, G., Mitchell, J., Moriwaki, Y., Power, M., Robertson, P., Seed, R. and Stokoe, K. II (2001), "Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils", J. Geotech. Geoenviron., 127(10), 817-833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
- Zarnani, S., El-Emam, M. and Bathurst, R.J. (2011), "Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests", Geomech. Eng., Int. J., 3(4), 291-321. https://doi.org/10.12989/gae.2011.3.4.291
- Zhang, G.Q. (2000), "Neural networks for classification: A survey", IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 30(4), 451-462. https://doi.org/10.1109/5326.897072
- Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016
- Zhang, W.G. and Goh, A.T.C. (2014), "Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns", Geomech. Eng., Int. J., 7(4), 431-458. https://doi.org/10.12989/gae.2014.7.4.431
Cited by
- Interactive image segmentation with a regression based ensemble learning paradigm vol.18, pp.7, 2017, https://doi.org/10.1631/FITEE.1601401
- Liquefaction maps in Babol City, Iran through probabilistic and deterministic approaches vol.5, pp.1, 2018, https://doi.org/10.1186/s40677-017-0094-9
- A study on the liquefaction risk in seismic design of foundations vol.11, pp.6, 2016, https://doi.org/10.12989/gae.2016.11.6.805
- Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study vol.77, pp.1, 2018, https://doi.org/10.1007/s10064-016-0924-0
- Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression vol.70, 2017, https://doi.org/10.1016/j.tust.2017.07.013
- A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling pp.1435-9537, 2018, https://doi.org/10.1007/s10064-018-1281-y
- Assessment of slope stability using multiple regression analysis vol.13, pp.2, 2016, https://doi.org/10.12989/gae.2017.13.2.237
- OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity vol.15, pp.4, 2018, https://doi.org/10.12989/gae.2018.15.4.987
- MARS inverse analysis of soil and wall properties for braced excavations in clays vol.16, pp.6, 2016, https://doi.org/10.12989/gae.2018.16.6.577
- Improving prediction of soil liquefaction using hybrid optimization algorithms and a fuzzy support vector machine vol.78, pp.7, 2019, https://doi.org/10.1007/s10064-018-01445-3
- Critical Distance of the Seismic Waves’ Impact in Disintegration of Rock Blasting vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5134948
- Energy-based evaluation of liquefaction potential of uniform sands vol.17, pp.2, 2016, https://doi.org/10.12989/gae.2019.17.2.145
- Soil Liquefaction Assessment Using Soft Computing Approaches Based on Capacity Energy Concept vol.10, pp.9, 2016, https://doi.org/10.3390/geosciences10090330
- Evaluation of seismic site classification for Kahramanmaras City, Turkey vol.80, pp.3, 2016, https://doi.org/10.1007/s12665-021-09396-x
- Deterministic and probabilistic analysis of tunnel face stability using support vector machine vol.25, pp.1, 2021, https://doi.org/10.12989/gae.2021.25.1.017
- Evaluation of geological conditions and clogging of tunneling using machine learning vol.25, pp.1, 2016, https://doi.org/10.12989/gae.2021.25.1.059
- Towards a Comprehensive Assessment of Statistical versus Soft Computing Models in Hydrology: Application to Monthly Pan Evaporation Prediction vol.13, pp.17, 2016, https://doi.org/10.3390/w13172451
- A hybrid GMDH neural network and logistic regression framework for state parameter-based liquefaction evaluation vol.58, pp.12, 2016, https://doi.org/10.1139/cgj-2020-0686