• 제목/요약/키워드: effectors

검색결과 163건 처리시간 0.036초

Stage-Specific Changes and Regulation of Endogenous Protein Phosphorylation in Allomyces macrogynus

  • Park, Young-Shik;Oh, Keun-Hee;Lee, Soo-Woong;Seong, Chang-Soo;Park, I-Ha;Yim, Jeong-Bin
    • Journal of Microbiology
    • /
    • 제34권4호
    • /
    • pp.374-378
    • /
    • 1996
  • In the aquatic fungus Allomyces macrogynus the effects of $Ca^{2+}$ and cAMP on the intracellular signal transduction of zoospore germination were studied using in vitro protein phosphorylation assay system. An endogenously phosphorylated protein (p50) having molecular weight of 50 kDa on SDS-PAGE was found in soluble fractions of both zoospore and mycelium. In zoospore extract, the endogenous phosphorylation of p50 was weak without any effectors, but was enhanced by $Ca^{2+}$ and even more by cAMP. Phosphorylation of the same protein in mycelial extract was high only in the absence of cAMP. Irrespective of the presence of $Ca^{2+}$ and cAMP, its phosphorylation was antagonistically suppressed in assay of combined zoospore and mycelial extracts. These results suggest that p50 is interconvertible in phosphorylation/dephosphorylation as a novel protein involved in germination of A. macrogynus. The antagonistic effect of cAMP to the phosphorylation of p50s from different developmental stages may be important in the regulation of cellular differentiation.

  • PDF

휴머노이드 로롯팔의 물체 조작을 위한 지능형 거리 제어기 (Intelligent Distance Controller for Humanoid Robot Arms Handling a Common Object)

  • Bhogadi, Dileep K.;Cho, Hyun-Chan;Kim, Kwang-Sun;Wilson, Sara
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • The main object of this paper is concentrated on distance control of two robot arms of a humanoid using Fuzzy Logic Controller (FLC) for handling a common object. Serial Link Robot arms are widely used in most significantly in Humanoids serving for older people and also in various industrial applications. A method is proposed here that separates the interconnections between two robot arms so that the resulting model of two arms is decomposed into fuzzy logic based controller. The distance between two end effectors is always kept equal to that of the diameter of an object to be handled, so that the object would not fall down. Mathematical model of this system was obtained to simulate the behavior of serial robotic arms in close loop control before using fuzzy logic controller. Lagrangian equation of motion has been used to obtain the appropriate mathematical model of Robotic arms. The results are shown to provide some improvement over those obtained by more conventional means.

  • PDF

정공피 추출물의 (1,3)$\beta$-Glucan Synthase에 대한 억제효과 (Inhibitory Effect of Sorbus cortex Extract on (1,3)-$\beta$-Glucan Synthase)

  • 유명자;김보미;이정호;이영행;채규윤;백승화
    • 동의생리병리학회지
    • /
    • 제22권5호
    • /
    • pp.1196-1201
    • /
    • 2008
  • A examination of the kinetic properties of UDP-glucose : (1,3)-$\beta$-glucan (callose) synthase from mung bean seedings (Sorbus cortex) shows that these enzymes have a complex interaction with UDP-glucose and various effectors. Deoxynojirimycin increased the inhibitory effect of (1,3)-$\beta$-glucan synthase at the concentration-dependent manner by fluorescence assay. The inhibitory effect of Fr. 2-16 (97.15%) showed higher than that of deoxynojirimycin (80.63%). Fr. 2-3 inhibited the growth of the Candida albicans at 1 mm inhibition zone by disk diffusion method. These results suggest that Sorbus cortex extract can be used as a stable antifungal material.

In Vitro에서 PMA와 LPS로 활성화된 흰쥐 간내 Kupffer-와 Endothelial 세포에서의 NO 형성에 관한 연구 (NO Formation of the PMA and LPS-activated Rat Kupffer- and Endothelial Cells in vitro)

  • 김기성
    • Biomolecules & Therapeutics
    • /
    • 제3권3호
    • /
    • pp.188-191
    • /
    • 1995
  • The Present study was undertaken to indicate the major source of NO by liver cells in vitro. Even at early stages of induction or low LPS concentrations, NO was produced at high rates by LPS(Lipopolysaccharide) on the isolated rat kupffer cells. PMA(phorbol 12-myristate 13-acetate) induced NO formation at low rates in the same cells. IFN-${\gamma}$ (Interferon-${\gamma}$) alone had not induced NO formation but it stimulated the effects of LPS. Calcium ionophore A23187 caused no stimulatory effect. It suggests that LPS has especially strong NO inducer on the kupffer cells and its mechanism is related to those on macrophage in other organs. In other nonparenchymal liver cells, sinusoidal endothelial cells were not stimulated to produce NO either by inducers of aortic endothelium(A23187, ATP and ADP) or by effectors of macrophages(LPS, IFN-${\gamma}$. This results suggest that rat liver kupffer cells appear to be the major source of NO by liver cells in vitro. But in vivo, liver endothelial cells may still be capable of producing NO. Furthermore, kupffer cells may produce factors that facilitate NO production by the endothelial cells.

  • PDF

안동지역 전통식초의 이화학적 특성 (Physicochemical Characteristics of Traditional Vinegars in Andong province)

  • 이영철;장원영;김현위;최춘언;윤숙경
    • 한국식생활문화학회지
    • /
    • 제14권1호
    • /
    • pp.17-20
    • /
    • 1999
  • Three kinds of traditional Andong vinegars, manufactured from Songwhaju which was a traditional rice alcoholic beverage in Andong province, were investigated on the physicochemical characteristics compared with commercial rice vinegar speciality and on the factors affecting their flavor components. Traditional Andong vinegars had a low level of total acids$(3.1{\sim}3.6%)$ and more soluble solids than rice vinegar speciality. Lactic acid contents were also high and it came from lactic acid fermentation in the early stage of the vinegar manufacturing process. Other organic acids such as malic, citric and succinic acid were also detected. Free amino acid analysis showed that alanine, arginine and leucine contents, which were known as a main characteristics of rice vinegar, were especially high. In addition, a considerable amounts of glutamic acid and aspartic acid which were known as a mild effectors of acidic taste in rice vinegar products were detected.

  • PDF

Natural Variation in Virulence of Acidovorax citrulli Isolates That Cause Bacterial Fruit Blotch in Watermelon, Depending on Infection Routes

  • Song, Yu-Rim;Hwang, In Sun;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • 제36권1호
    • /
    • pp.29-42
    • /
    • 2020
  • Acidovorax citrulli causes bacterial fruit blotch in Cucurbitaceae, including watermelon. Although A. citrulli is a seed-borne pathogen, it can cause diverse symptoms in other plant organs like leaves, stems and fruits. To determine the infection routes of A. citrulli, we examined the virulence of six isolates (Ac0, Ac1, Ac2, Ac4, Ac8, and Ac11) on watermelon using several inoculation methods. Among six isolates, DNA polymorphism reveals that three isolates Ac0, Ac1, and Ac4 belong to Clonal Complex (CC) group II and the others do CC group I. Ac0, Ac4, and Ac8 isolates efficiently infected seeds during germination in soil, and Ac0 and Ac4 also infected the roots of watermelon seedlings wounded prior to inoculation. Infection through leaves was successful only by three isolates belonging to CC group II, and two of these also infected the mature watermelon fruits. Ac2 did not cause the disease in all assays. Interestingly, three putative type III effectors (Aave_2166, Aave_2708, and Aave_3062) with intact forms were only found in CC group II. Overall, our results indicate that A. citrulli can infect watermelons through diverse routes, and the CC grouping of A. citrulli was only correlated with virulence in leaf infection assays.

Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus

  • Leroux, Benoit;Carmoy, Nathalie;Giraudet, Delphine;Potin, Philippe;Larher, Francois;Bodin, Manuelle
    • Plant Biotechnology Reports
    • /
    • 제3권4호
    • /
    • pp.347-353
    • /
    • 2009
  • Procedures that induce microspore embryogenesis have been described for a range of Brassica species, but embryo yield remains low for a number of genotypes. We have carried out experiments with the microspores from a weakly responsive line of B. napus to determine the culture conditions that optimize their in vitro embryogenesis by treating them with effectors of ethylene synthesis and action. The results revealed that isolated microspores subjected to an initial heat stress in a medium supplemented with inhibitors of ethylene synthesis such as AVG and $CoCl_2$ exhibited significantly increased embryo yields. This suggested that regulatory effects are exerted by the ethylene produced by the isolated microspores on the early processes of gametogenesis. As a consequence, treatment of microspores with SAM, an ethylene synthesis precursor, or with the ethylene-releasing agent ethephon, led to decreases in embryo yield. A special response to ethylene during the early stages of microspore development was finally shown to occur through experiments where isolated microspores were treated for increasing periods of time with $CoCl_2$. Collectively, our data demonstrated that the induction of embryogenesis induced by heat stress can be enhanced by inhibitors of ethylene biosynthesis.

Systems Biological Approaches Reveal Non-additive Responses and Multiple Crosstalk Mechanisms between TLR and GPCR Signaling

  • Krishnan, Jayalakshmi;Choi, Sang-Dun
    • Genomics & Informatics
    • /
    • 제10권3호
    • /
    • pp.153-166
    • /
    • 2012
  • A variety of ligands differ in their capacity to bind the receptor, elicit gene expression, and modulate physiological responses. Such receptors include Toll-like receptors (TLRs), which recognize various patterns of pathogens and lead to primary innate immune activation against invaders, and G-protein coupled receptors (GPCRs), whose interaction with their cognate ligands activates heterotrimeric G proteins and regulates specific downstream effectors, including immuno-stimulating molecules. Once TLRs are activated, they lead to the expression of hundreds of genes together and bridge the arm of innate and adaptive immune responses. We characterized the gene expression profile of Toll-like receptor 4 (TLR4) in RAW 264.7 cells when it bound with its ligand, 2-keto-3-deoxyoctonate (KDO), the active part of lipopolysaccharide. In addition, to determine the network communications among the TLR, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and GPCR, we tested RAW 264.7 cells with KDO, interferon-${\beta}$, or cAMP analog 8-Br. The ligands were also administered as a pair of double and triple combinations.

c-myc Expression: Keep the Noise Down!

  • Chung, Hye-Jung;Levens, David
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.157-166
    • /
    • 2005
  • The c-myc proto-oncogene encodes a nuclear protein that is deregulated and/or mutated in most human cancers. Acting primarily as an activator and sometimes as a repressor, MYC protein controls the synthesis of up to 10-15% of genes. The key MYC targets contributing to oncogenesis are incompletely enumerated and it is not known whether pathology arises from the expression of physiologic targets at abnormal levels or from the pathologic response of new target genes that are not normally regulated by MYC. Regardless of which, available evidence indicates that the level of MYC expression is an important determinant of MYC biology. The c-myc promoter has architectural and functional features that contribute to uniform expression and help to prevent or mitigate conditions that might otherwise create noisy expression. Those features include the use of an expanded proximal promoter, the averaging of input from dozens of transcription factors, and real-time feedback using the supercoil-deformable Far UpStream Element (FUSE) as physical sensor of ongoing transcriptional activity, and the FUSE binding protein (FBP) as well as the FBP interacting repressor (FIR) as effectors to enforce normal transcription from the c-myc promoter.

Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans

  • Yu Jae-Hyuk
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.145-154
    • /
    • 2006
  • Heterotrimeric G proteins (G proteins) are conserved in all eukaryotes and are crucial components sensing and relaying external cues into the cells to elicit appropriate physiological and biochemical responses. Basic units of the heterotrimeric G protein signaling system include a G protein-coupled receptor (GPCR), a G protein composed of ${\alpha},\;{\beta},\;and\;{\gamma}$ subunits, and variety of effectors. Sequential sensitization and activation of these G protein elements translates external signals into gene expression changes, resulting in appropriate cellular behaviors. Regulators of G protein signaling (RGSs) constitute a crucial element of appropriate control of the intensity and duration of G protein signaling. For the past decade, G protein signaling and its regulation have been intensively studied in a number of model and/or pathogenic fungi and outcomes of the studies provided better understanding on the upstream regulation of vegetative growth, mating, development, virulence/pathogenicity establishment, and biosynthesis of secondary metabolites in fungi. This review focuses on the characteristics of the basic upstream G protein components and RGS proteins, and their roles controlling various aspects of biological processes in the model filamentous ascomycete fungus Aspergillus nidulans. In particular, their functions in controlling hyphal proliferation, asexual spore formation, sexual fruiting, and the mycotoxin sterigmatocystin production are discussed.