Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans

  • Yu Jae-Hyuk (Department of Food Microbiology and Toxicology, Food Research Institute, and Molecular and Environmental Toxicology Center, University of Wisconsin)
  • Published : 2006.04.01

Abstract

Heterotrimeric G proteins (G proteins) are conserved in all eukaryotes and are crucial components sensing and relaying external cues into the cells to elicit appropriate physiological and biochemical responses. Basic units of the heterotrimeric G protein signaling system include a G protein-coupled receptor (GPCR), a G protein composed of ${\alpha},\;{\beta},\;and\;{\gamma}$ subunits, and variety of effectors. Sequential sensitization and activation of these G protein elements translates external signals into gene expression changes, resulting in appropriate cellular behaviors. Regulators of G protein signaling (RGSs) constitute a crucial element of appropriate control of the intensity and duration of G protein signaling. For the past decade, G protein signaling and its regulation have been intensively studied in a number of model and/or pathogenic fungi and outcomes of the studies provided better understanding on the upstream regulation of vegetative growth, mating, development, virulence/pathogenicity establishment, and biosynthesis of secondary metabolites in fungi. This review focuses on the characteristics of the basic upstream G protein components and RGS proteins, and their roles controlling various aspects of biological processes in the model filamentous ascomycete fungus Aspergillus nidulans. In particular, their functions in controlling hyphal proliferation, asexual spore formation, sexual fruiting, and the mycotoxin sterigmatocystin production are discussed.

Keywords

References

  1. Adams, T.H., J.K. Wieser, and J-H Yu, 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 12, 3827-3833
  2. Bolker, M. 1998. Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet. Biol., 25, 143-156 https://doi.org/10.1006/fgbi.1998.1102
  3. Brown, D.W., J.H. Yu, H.S. Kelkar, M. Fernandes, T.C. Nesbitt, N.P. Keller, T.H. Adams, T.H., and T.J. Leonard. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 93, 1418-1422
  4. Burchett, S.A. 2000. Regulators of G protein signaling: a bestiary of modular protein binding domains. J. Neurochem. 75, 1335-1351 https://doi.org/10.1046/j.1471-4159.2000.0751335.x
  5. Burchett, S.A., P. Flanary, C. Aston, L. Jiang, K.H. Young, P. Uetz, et al., 2002. Regulation of stress response signaling by the N-terminal dishevelled/EGL-10/pleckstrin domain of Sst2, a regulator of G protein signaling in Saccharomyces cerevisiae. J. Biol. Chem. 277, 22156-22167 https://doi.org/10.1074/jbc.M202254200
  6. Chang, M.H., K.S. Chae, D.M. Han, and K.Y. Jahng. 2004. The GanB $G{\alpha}$-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics 167, 1305-1315 https://doi.org/10.1534/genetics.103.025379
  7. Chen, J.G., F.S. Willard, J. Huang, J. Liang, S.A. Chasse, A.M. Jones, and D.P. Siderovski. 2003. A seventransmembrane RGS protein that modulates plant cell proliferation. Science 301, 1728-1731 https://doi.org/10.1126/science.1087790
  8. Chidiac, P. and A.A. Roy. 2003. Activity, regulation, and intracellular localization of RGS proteins. Receptors Channels 9, 135-147 https://doi.org/10.1080/10606820308244
  9. Chung, K.S., M. Won, S.B. Lee, Y.J. Jang, K.L. Hoe, D.U. Kim, et al., 2001. Isolation of a novel gene from Schizosaccharomyces pombe: $stm1^+$ encoding a seventransmembrane loop protein that may couple with the heterotrimeric Galpha 2 protein, Gpa2. J. Biol. Chem. 276, 40190-40201 https://doi.org/10.1074/jbc.M100341200
  10. Feldbrugge, M., J. Kamper, S. Gero, and R. Kahmann. 2004. Regulation of mating and pathogenic development in Ustilago maydis. Curr. Opin. Microbiol. 7, 666-672 https://doi.org/10.1016/j.mib.2004.10.006
  11. Fisk, H.A. and M.P. Yaffe. 1997. Mutational analysis of Mdm1p function in nuclear and mitochondrial inheritance. J. Cell. Biol. 138, 485-494 https://doi.org/10.1083/jcb.138.3.485
  12. Galagan, J.E., S.E. Calvo, K.A. Borkovich, E.U. Selker, N.D. Read, D. Jaffe, et al., 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859-868 https://doi.org/10.1038/nature01554
  13. Han, K.H., K.Y. Han, J.H. Yu, K.S. Chae, K.Y. Jahng, and D.M. Han. 2001 The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol. Microbiol. 41, 299-309 https://doi.org/10.1046/j.1365-2958.2001.02472.x
  14. Han, K.H. and R.A. Prade. 2002. Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol. Microbiol. 43, 1065-1078 https://doi.org/10.1046/j.1365-2958.2002.02774.x
  15. Han, K.H., J.A. Seo, and J.H. Yu. 2004a. A putative G protein -coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol. Microbiol. 51, 1333-1345 https://doi.org/10.1111/j.1365-2958.2003.03940.x
  16. Han, K.H., J.A. Seo, and J.H Yu. 2004b. Regulators of G-protein signaling in Aspergillus nidulans: RgsA downregulates stress response and stimulate asexual sporulation through attenuation of GanB ($G{\alpha}$) signaling. Mol. Microbiol. 53, 529-540 https://doi.org/10.1111/j.1365-2958.2004.04163.x
  17. Hicks, J.K., J.H. Yu, N.P. Keller, and T.H. Adams. 1997. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA $G\alpha$ protein-dependent signaling pathway. EMBO J. 16, 4916-4923 https://doi.org/10.1093/emboj/16.16.4916
  18. Hill, S.J. 2006. G-protein-coupled receptors: past, present and future. Br. J. Pharmacol. 147 Suppl 1, S27-37 https://doi.org/10.1038/sj.bjp.0706455
  19. Kasahara, S., P. Wang, and D.L. Nuss. 2000. Identification of bdm-1, a gene involved in G protein $\beta$-subunit function and $\alpha$-subunit accumulation. Proc. Natl. Acad. Sci. USA 97, 412-417
  20. Kawasaki, L., O. Sanchez, K. Shiozaki, and J. Aguirre. 2002. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol. Microbiol. 45, 1153-1163 https://doi.org/10.1046/j.1365-2958.2002.03087.x
  21. Knol, J.C., R. Engel, M. Blaauw, A.J. Visser, and P.J. van Haastert. 2005. The phosducin-like protein PhLP1 is essential for $G\beta\gamma$ dimer formation in Dictyostelium discoideum. Mol. Cell. Biol. 25, 8393-8400 https://doi.org/10.1128/MCB.25.18.8393-8400.2005
  22. Kraakman, L., K. Lemaire, P. Ma, A.W. Teunissen, M.C. Donaton, P. Van Dijck, et al., 1999. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol. Microbiol. 32, 1002-1012 https://doi.org/10.1046/j.1365-2958.1999.01413.x
  23. Lafon, A, J.A. Seo, K.H. Han, J.H. Yu, and C. d'Enfert. 2005. The heterotrimeric G-protein $GanB(\alpha)-SfaD(\beta)-GpgA(\gamma)$ is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics 171, 71-80 https://doi.org/10.1534/genetics.105.040584
  24. Lafon, A., K.H. Han, J.A. Seo, J.H. Yu, and C. d'Enfert. 2006. G protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet. Biol. In press
  25. Lafuente, M.J. and C. Gancedo. 1999. Disruption and basic functional analysis of six novel ORFs of chromosome XV from Saccharomyces cerevisiae. Yeast 15, 935-943 https://doi.org/10.1002/(SICI)1097-0061(199907)15:10B<935::AID-YEA393>3.0.CO;2-A
  26. Lee, B.N. and T.H. Adams. 1994a. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation leads to activation of brlA and premature initiation of development. Mol. Microbiol. 14, 323-334 https://doi.org/10.1111/j.1365-2958.1994.tb01293.x
  27. Lee, B.N. and T.H. Adams. 1994b. The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal. Genes Dev. 8, 641-651 https://doi.org/10.1101/gad.8.6.641
  28. Lee, N., C.A. D'Souza, and J.W. Kronstad. 2003. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu. Rev. Phytopathol. 41, 399-427 https://doi.org/10.1146/annurev.phyto.41.052002.095728
  29. Lengeler, K.B., R.C. Davidson, C. D'souza, T. Harashima, W.C. Shen, P. Wang, X. Pan, M. Waugh, and J. Heitman. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64, 746-785 https://doi.org/10.1128/MMBR.64.4.746-785.2000
  30. Lukov, G.L., T. Hu, J.N. Mclaughlin, H.E. Hamm, and B.M. Willardson. 2005. Phosducin-like protein acts as a molecular chaperone for G protein $\beta\gamma$ dimer assembly. EMBO J. 24, 1965-1975 https://doi.org/10.1038/sj.emboj.7600673
  31. McCudden, C.R., M.D. Hains, R.J. Kimple, D.P. Siderovski, and F.S. Willard. 2005. G-protein signaling: back to the future. Cell. Mol. Life Sci. 62, 551-577 https://doi.org/10.1007/s00018-004-4462-3
  32. Morris, A.J. and C.C. Malbon. 1999. Physiological regulation of G protein-linked signaling. Physiol. Rev. 79, 1373- 1430 https://doi.org/10.1152/physrev.1999.79.4.1373
  33. Neves, S.R., P.T. Ram, and R. Iyengar. 2002. G protein pathways. Science 296, 1636-1639 https://doi.org/10.1126/science.1071550
  34. Ni, M., S. Rierson, J.-A. Seo, and J.-H. Yu. 2005. The pkaB gene encoding the secondary PKA catalytic subunit has a synthetic lethal interaction with pkaA and plays overlapping and opposite roles in Aspergillus nidulans. Eukaryot. Cell 4, 1465-1476
  35. Rosen, S., J.H. Yu, and T.H. Adams. 1999. The Aspergillus nidulans sfaD gene encodes a G protein $\beta$subunit that is required for normal growth and repression of sporulation. EMBO J. 18, 5592-5600 https://doi.org/10.1093/emboj/18.20.5592
  36. Sato, T.K., M. Overduin, and S.D. Emr. 2001. Location, location, location: membrane targeting directed by PX domains. Science 294, 1881-1885 https://doi.org/10.1126/science.1065763
  37. Seo, J.A., Y. Guan, and J.H. Yu. 2003. Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics 165, 1083-1093
  38. Seo, J.A., K.H. Han, and J.H. Yu. 2004. The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol. Microbiol. 53, 1611-1623 https://doi.org/10.1111/j.1365-2958.2004.04232.x
  39. Seo, J.A., K.H. Han, and J.H. Yu. 2005. Multiple roles of a heterotrimeric G protein ${\gamma}$ subunit in governing growth and development of Aspergillus nidulans. Genetics 171, 81-89 https://doi.org/10.1534/genetics.105.042796
  40. Seo, J.A. and J.H. Yu. 2006. The phosducin-like protein PhnA is required for $G\beta\gamma$-mediated signaling for vegetative growth, developmental control and toxin biosynthesis in Aspergillus nidulans. Eukaryot. Cell 5, 400-410 https://doi.org/10.1128/EC.5.2.400-410.2006
  41. Seo, J.A., Y. Guan, and J.H. Yu. 2006. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 172, 1535-1544 https://doi.org/10.1534/genetics.105.052258
  42. Shimizu, K. and N.P. Keller. 2001. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157, 591-600
  43. Smith, A., M.P. Ward, and S. Garrett. 1998. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 17, 3556-3564 https://doi.org/10.1093/emboj/17.13.3556
  44. Tag, A., J. Hicks, G. Garifullina, C. Ake Jr, T.D. Phillips, M. Beremand, and N. Keller. 2000. G-protein signalling mediates differential production of toxic secondary metabolites. Mol. Microbiol. 38, 658-665 https://doi.org/10.1046/j.1365-2958.2000.02166.x
  45. Versele, M., J.H. de Winde, and J.M.Thevelein. 1999. A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J. 18, 5577-5591 https://doi.org/10.1093/emboj/18.20.5577
  46. Wieser J., J.H. Yu, and T.H. Adams. 1997. Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulans. Curr. Genet. 32, 218-224 https://doi.org/10.1007/s002940050269
  47. Xue, Y., M. Batlle, and J.P. Hirsch. 1998. GPRI encodes a putative G protein-coupled receptor that associates with the Gpa2p $G\alpha$ subunit and functions in a ras-independent pathway. EMBO J. 17, 1996-2007 https://doi.org/10.1093/emboj/17.7.1996
  48. Yu, J.H., J. Wieser, and T.H. Adams. 1996a. The Aspergillus FlbA RGS domain protein antagonizes G-protein signaling to block proliferation and allow development. EMBO J. 15, 5184-5190
  49. Yu, J.H., R.A.E. Butchko, M. Fernandes, N.P. Keller, T.J. Leonard, and T.H. Adams. 1996b. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr. Genet. 29, 549-555 https://doi.org/10.1007/BF02426959
  50. Yu, JH., S. Rosen, and T.H. Adams. 1999. Extragenic suppressors of loss-of-function mutations in the Aspergillus FlbA regulator of G-protein signaling domain protein. Genetics 151, 97-105
  51. Yu, J.H. and N.P. Keller. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 43, 437-458 https://doi.org/10.1146/annurev.phyto.43.040204.140214
  52. Zheng, B., Y.C. Ma, R.S. Ostrom, C. Lavoie, G.N. Gill, P.A. Insel, et al,. 2001. RGS-PX1, a GAP for $G\alpha$s and sorting nexin in vesicular trafficking. Science 294, 1939-1942 https://doi.org/10.1126/science.1064757
  53. Zhong, H. and R.R. Neubig. 2001. Regulator of G protein signaling proteins: novel multifunctional drug targets. J. Pharmacol. Exp. Ther. 297, 837-845