• Title/Summary/Keyword: RGS

Search Result 48, Processing Time 0.042 seconds

Forskolin-Induced Stimulation of RGS2 mRNA in C6 Astrocytoma Cells

  • Kim Sung-Dae;Cho Jae-Youl;Park Hwa-Jin;Kim Sang-Keun;Rhee Man-Hee
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2006
  • RGS is a negative regulator of G-protein signaling and can be identified by the presence of a conserved $120{sim}125$ amino acid motif, which is referred to as the RGS box. A number of RGSs are induced in response to a wide variety of stimuli. Increased levels of RGSs lead to significant decreases in GPCR responsiveness. To obtain further evidence of a role of RGS proteins in rat C6 astrocytoma cells, we first determined the expression profile of RGS-specific mRNA in C6 cells using reverse transcription-polymerase chain reaction (RT-PCR) with a poly dT18 primer and transcript-specific primers. We found that RGS2, RGS3, RGS6, RGS9, RGS10, RGS12, and RGS16 were differentially expressed in C6 astrocytoma cells. The highest expression rate was found for RGS3, followed by RGS16, RGS10 and RGS9, whereas the expression level for RGS2 was barely detectable. We next assessed whether forskolin regulated the expression of RGSs expressed in C6 astrocytoma cells. The present study found that forskolin dose-dependently stimulated the expression of RGS2 transcripts. This up-regulation of RGS2 gene was abrogated by H-89, potent and broad-spectrum protein kinase A (PKA) inhibitors. Actinomycin D completely inhibited the up-regulation of RGS2 gene induced by forskolin $(10{\mu}M)$, indicating that the regulation of RGS2 gene is controlled at the transcriptional level. In addition, forskolin did significantly activate transcriptional cAMP response element (CRE) in either HEK 293 cells or C6 cells and did not modulate the $NF-{\kappa}B$ and AP-l activity as measured by luciferase reporter gene assay. Finally, forskolin induced the expression of RGS2 mRNA in C6 astrocytoma cells, which depend on the PKA pathway and CRE transcriptional pathways.

  • PDF

RGS3 Suppresses cAMP Response Element (CRE) Activity Mediated by CB2 Cannabinoid Receptor in HEK293 Cells (캐너비노이드 수용체 CB2의 신호전달작용에 미치는 RGS3의 억제적 효과)

  • Kim, Sung-Dae;Lee, Whi-Min;Endale, Mehari;Cho, Jae-Youl;Park, Hwa-Jin;Oh, Jae-Wook;Rhee, Man-Hee
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1506-1513
    • /
    • 2009
  • RGS proteins have been identified as negative regulators of G protein signalling pathways and attenuate the activity of GPCR receptors. However, information on the regulatory effects of RGS proteins in the activity of cannabinoid receptors is limited. In this study, the role of RGS proteins on the signal transduction of the CB2 cannabinoid receptor was investigated in HEK293 cells co-transfected with CB2-receptors and plasmids encoding RGS2, RGS3, RGS4 and RGS5. Treatment of cells with WIN55, 212-2, a CB2 receptor agonist, inhibited forskolin-induced cAMP response element (CRE) activity in CB2-transfected HEK293 (CB2-HEK293) cells. This inhibitory effect of WIN 55, 212-2 on CRE activity was reversed by co-transfection of CB2-HEK293 cells with RGS3, but not with RGS2, RGS4 and RGS5. However, endogenous RGS3 protein knocked down by a small interfering siRNA targeting RGS3 gene enhanced inhibition of forskolin induced CRE activity via agonist induced CB2 receptor signal transduction. These results indicate the functional role of endogenous RGS protein in cannabinoid signaling pathways and define receptor-selective roles of endogenous RGS3 in modulating CRE transcriptional responses to agonist induced CB2 receptor activity.

Role of Regulators of G-Protein Signaling 4 in $Ca^{2+}$ Signaling in Mouse Pancreatic Acinar Cells

  • Park, Soon-Hong;Lee, Syng-Ill;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.383-388
    • /
    • 2011
  • Regulators of G-protein signaling (RGS) proteins are regulators of $Ca^{2+}$ signaling that accelerate the GTPase activity of the G-protein ${\alpha}$ -subunit. RGS1, RGS2, RGS4, and RGS16 are expressed in the pancreas, and RGS2 regulates G-protein coupled receptor (GPCR)-induced $Ca^{2+}$ oscillations. However, the role of RGS4 in $Ca^{2+}$ signaling in pancreatic acinar cells is unknown. In this study, we investigated the mechanism of GPCR-induced $Ca^{2+}$ signaling in pancreatic acinar cells derived from $RGS4^{-/-}$ mice. $RGS4^{-/-}$ acinar cells showed an enhanced stimulus intensity response to a muscarinic receptor agonist in pancreatic acinar cells. Moreover, deletion of RGS4 increased the frequency of $Ca^{2+}$ oscillations. $RGS4^{-/-}$ cells also showed increased expression of sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type 2. However, there were no significant alterations, such as $Ca^{2+}$ signaling in treated high dose of agonist and its related amylase secretion activity, in acinar cells from $RGS4^{-/-}$ mice. These results indicate that RGS4 protein regulates $Ca^{2+}$ signaling in mouse pancreatic acinar cells.

Gonadotropin Regulation of Regulator of G Protein Signaling 2 (RGS-2) Expression in the Rat Ovary (백서 난소에서 성선자극호르몬에 의한 RGS-2의 발현 조절)

  • Lee, Yu-Il;Lee, Eun-Suk;Kim, Sun-Ae;Kim, Mi-Young;Cho, Moon-Kyoung;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.2
    • /
    • pp.111-118
    • /
    • 2008
  • Objective: The purpose of the present study was to examine the hormonal regulation of RGS-2 in the rat ovary. Methods: Immature rats were injected with 10 IU of PMSG to induce multiple growth of preovulatory follicles and 10 IU of hCG to induce ovulation. Northern blot analysis performed for gene expression and in situ hybridization performed for mRNA localization. Results: Northern blot analysis revealed that pregnant mare's serum gonadotropin (PMSG) treatment did not affect RGS-2 mRNA levels. In contrast, human chorionic gonadotropin (hCG) treatment of PMSG-primed rats resulted in an increase in RGS-2 expression within $1{\sim}3\;h$. The major cell-types expressing RGS-2 mRNA were oocytes regardless of follicle size. Interestingly, hCG treatment caused the stimulation of RGS-2 gene expression in granulosa cells of preovulatory and growing follicles. In contrast, cell types expressing RGS-2 protein were theca cells regardless of hCG treatment. Like in vivo, treatment of preovulatory granulosa cells with LH in vitro stimulated RGS-2 levels within 1 h. Interestingly, GnRH antagonist II enhanced the stimulatory action of LH. Conclusion: The present study demonstrates the LH/hCG induction of RGS-2 in preovulatory granulosa cells and suggests a role of RGS-2 in Gq protein signaling pathway during ovulation.

RGS Protein Specificity Towards Gq- and Gi/o-Mediated ERK 1/2 and Akt Activation, in vitro

  • Anger, Thomas;Klintworth, Nils;Stumpf, Christian;Daniel, Werner G.;Mende, Ulrike;Garlichs, Christoph D.
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.899-910
    • /
    • 2007
  • Extracellular Regulated Kinases (ERK) and Protein Kinase B (Akt) are intermediaries in relaying extracellular growth signals to intracellular targets. Each pathway can become activated upon stimulation of G protein-coupled receptors mediated by $G_q$ and $G_{i/o}$ proteins subjected to regulation by RGS proteins. The goal of the study was to delineate the specificity in which cardiac RGS proteins modulate $G_{q^-}$ and $G_{i/o}$-induced ERK and Akt phosphorylation. To isolate $G_{q^-}$ and $G_{i/o}$-mediated effects, we exclusively expressed muscarinic $M_2$ or $M_3$ receptors in COS-7 cells. Western blot analyses demonstrated increase of phosphorylation of ERK 1.7-/3.3-fold and Akt 2.4-/6-fold in $M_{2^-}/M_{3^-}$ expressing cells through carbachol stimulation. In co-expressions, $M_3/G_q$-induced activation of Akt was exclusively blunted through RGS3s/RGS3, whereas activation of ERK was inhibited additionally through RGS2/RGS5. $M_2/G_{i/o}$ induced Akt activation was inhibited by all RGS proteins tested. RGS2 had no effect on $M_2/G_{i/o}$-induced ERK activation. The high degree of specificity in RGS proteins-depending modulation of $G_{q^-}$ and $G_{i/o}$-mediated ERK and Akt activation in the muscarinic network cannot merely be attributed exclusively to RGS protein selectivity towards $G_q$ or $G_{i/o}$ proteins. Counter-regulatory mechanisms and inter-signaling cross-talk may alter the sensitivity of GPCR-induced ERK and Akt activation to RGS protein regulation.

Growth and Nutrient Utilization in Kids Fed Expander-extruded Complete Feed Pellets Containing Red Gram (Cajanus cajan) Straw

  • Reddy, P. Baswa;Reddy, T.J.;Reddy, Y.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1721-1725
    • /
    • 2012
  • A growth and digestibility study was conducted using Osmanabadi goat male kids by feeding complete diets in the form of mash or expander extruded pellets containing different levels of red gram (Cajanus cajan) straw (RGS). Two iso-nitrogenous complete diets were prepared by incorporating RGS at 35% and 50% levels. Half the quantity of each complete mash feed was then converted into pellets through expander extruder processing. Thirty two kids of 4 to 5 months age were divided into four groups of eight each and were fed for 150 d with four experimental diets (T1: mash with 35% RGS, T2: mash with 50% RGS, T3: pellets with 35% RGS and T4: pellets with 50% RGS). Pelleting of complete diets significantly (p<0.001) increased the voluntary feed intake (671.45 vs 426.28 g/d) at both levels of RGS in the feeds. Average daily gain (ADG, g/d) also increased significantly (p<0.001) from 48.79 in kids fed mash diet to 71.29 in those fed with pelleted diets. Feed conversion efficiency (dry matter (DM) intake: weight gain) was comparable among all the treatment groups. Digestibility of nutrients was not affected by pelleting of the feeds whereas, increasing the level of inclusion of RGS in feeds from 35% to 50% decreased (p<0.05) the digestibility of DM and crude protein (CP) resulting in lower (p<0.001) metabolizable energy (ME) content (MJ/kg DM) in feeds with 50% RGS (7.93 vs 8.75). Daily intake (MJ/kg $BW^{-0.75}$) of ME decreased (p<0.05) in feeds containing 50% RGS while pelleting of feeds increased (p<0.05) the intake of DM, CP, digestible crude protein (DCP) and ME. It is inferred that expander extruder pelleting can efficiently utilize RGS up to 50% level in complete diets for growing goat kids.

RGS Proteins and Opioid Signaling (Regulator of G-protein Signaling (RGS) 단백질과 아편 신호 전달)

  • Kim, Kyung Seon;Palmer, Pamela Pierce;Kim, Ki Jun
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The regulators of the G protein signaling (RGS) proteins are responsible for the rapid acceleration of the GTPase-activity intrinsic to the heterotrimeric G protein alpha subunits. As GTPase-activating proteins (GAP), the RGS proteins negatively regulate the G-protein signals. Recently, the RGS proteins are known to be one of the important regulators of opioid signal transduction and the development of tolerance. The aim of this study was to review the recent discovery and understanding of the role of RGS proteins in opioid signaling and the development of tolerance. This information will be useful for medical personnel, particularly those involved in anesthesia and pain medicine, by helping them improve the effective use of opioids and develop new drugs that can prevent opioid tolerance.

CHANGING OF RGS TRANSCRIPTS LEVELS BY LOW-DOSE-RATE IONIZING RADIATION IN MOUSE TESTIS

  • Kim, Tae-Hwan;Baik, Ji Sue;Heo, Kyu;Kim, Joong Sun;Lee, Ki Ja;Rhee, Man Hee;Kim, Sung Dae
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • Deleterious effects of high dose radiation exposure with high-dose-rate are unarguable, but they are still controversial in low-dose-rate. The regulator of G-protein signaling (RGS) is a negative regulator of G protein-coupled receptor (GPCR) signaling. In addition, it is reported that irradiation stress led to GPCR-mediated mitogen-activated protein kinase (MAPK) and phosphotidylinositol 3-kinase (PI3-k) signaling. The RGS mRNA expression profiles by whole body radiation with low-dose-rate has not yet been explored. In the present study, we, therefore, examined which RGS was modulated by the whole body radiation with low-dose-rate ($3.49mGy{\cdot}h^{-1}$). Among 16 RGS expression tested, RGS6, RGS13 and RGS16 mRNA were down-regulated by low-dose-rate irradiation. This is the first report that whole body radiation with low-dose-rate can modulate the different RGS expression levels. These results are expected to reveal the potential target and/or the biomarker proteins associated with male testis toxicity induced by low-dose-rate irradiation, which might contribute to understanding the mechanism beyond the testis toxicity.

Selection of suitable reference gene for gene expression studies of porcine ovaries under different conditions in quantitative reverse transcription polymerase chain reaction assay

  • Kim, Hwan-Deuk;Jeon, Hye-Jin;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Han, Jee-Eun;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.96-105
    • /
    • 2022
  • The ovary undergoes substantial physiological changes along with estrus phase to mediate negative/positive feedback to the upstream reproductive tissues and to play a role in producing a fertilizable oocyte in the developing follicles. However, the disorder of estrus cycle in female can lead to diseases, such as cystic ovary which is directly associated with decline of overall reproductive performance. In gene expression studies of ovaries, quantitative reverse transcription polymerase chain reaction (qPCR) assay has been widely applied. During this assay, although normalization of target genes against reference genes (RGs) has been indispensably conducted, the expression of RGs is also variable in each experimental condition which can result in false conclusion. Because the understanding for stable RG in porcine ovaries was still limited, we attempted to assess the stability of RGs from the pool of ten commonly used RGs (18S, B2M, PPIA, RPL4, SDHA, ACTB, GAPDH, HPRT1, YWHAZ, and TBP) in the porcine ovaries under different estrus phase (follicular and luteal phase) and cystic condition, using stable RG-finding programs (geNorm, Normfinder, and BestKeeper). The significant (p < 0.01) differences in Ct values of RGs in the porcine ovaries under different conditions were identified. In assessing the stability of RGs, three programs comprehensively agreed that TBP and YWHAZ were suitable RGs to study porcine ovaries under different conditions but ACTB and GAPDH were inappropriate RGs in this experimental condition. We hope that these results contribute to plan the experiment design in the field of reproductive physiology in pigs as reference data.

Genetic association of polymorphisms in porcine RGS16 with porcine circovirus viral load in naturally infected Yorkshire pigs

  • Lee, Seung-Hoon;Lim, Kyu-Sang;Hong, Ki-Chang;Kim, Jun-Mo
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1223-1231
    • /
    • 2021
  • Regulator of G protein signaling 16 (RGS16) is known to be associated with porcine circovirus type 2 (PCV2). PCV2 associated disease (PCVAD) is a serious problem in the swine industry. The representative symptoms of PCVAD are high viral titer proliferation and decreased average daily gain. In this study, we identified single nucleotide polymorphisms (SNPs) in the RGS16 region, including the upstream region. Of the 22 identified SNPs, rs332913874, rs326071195, and rs318298586 were genotyped in 142 Yorkshire pigs. These SNPs were significantly associated with the PCV2 viral load. Moreover, the haplotype combination was also related to the PCV2 viral load. The haplotype and diplotype analysis also had a significant difference with the PCV2 viral load. Taken together, our results suggest that RGS16 SNPs considerably affect the PCV2 viral load.