• Title/Summary/Keyword: effector T cells

검색결과 131건 처리시간 0.026초

Different Pattern of p27kip1 and p21cip1 Expression Following Ex Vivo Activation of CD8+ T Lymphocytes

  • Kim, Sung-Jin;Lee, Hyeon-Woo
    • Biomolecules & Therapeutics
    • /
    • 제15권4호
    • /
    • pp.218-223
    • /
    • 2007
  • T cell proliferation is a pivotal to an effective immune response. Cyclin-dependent kinase (cdk) inhibitor, $p27^{kip1}$ is degraded to initiate T cell expansion. In this study, we show that although the expression of $p27^{kip1}$ protein was down-regulated, that of $p21^{cip1}$, another cdk inhibitor, was up-regulated in $CD8^+$ T cells following in vitro stimulation. Ex vivo gB antigen-stimulation following HSV immunization increased $p21^{cip1}$ positive cells that co-expressed IFN-$\gamma$. Moreover, $p21^{cip1}$ was co-expressed with IFN-${\gamma}$ in E7 antigen-stimulated $CD8^+$ T cells, whereas $p27^{kip1}$ was not. Our findings imply a role of $p21^{cip1}$ proteins in antigen-induced effector $CD8^+$ T cells differentiation in vivo.

Regulation of Tumor Immune Surveillance and Tumor Immune Subversion by TGF-$\beta$

  • Park, Hae-Young;Wakefield, Lalage M;Mamura, Mizuko
    • IMMUNE NETWORK
    • /
    • 제9권4호
    • /
    • pp.122-126
    • /
    • 2009
  • Transforming growth factor-$\beta$ (TGF-$\beta$) is a highly pleiotropic cytokine playing pivotal roles in immune regulation. TGF-$\beta$ facilitates tumor cell survival and metastasis by targeting multiple cellular components. Focusing on its immunosuppressive functions, TGF-$\beta$ antagonists have been employed for cancer treatment to enhance tumor immunity. TGF-$\beta$ antagonists exert anti-tumor effects through #1 activating effector cells such as NK cells and cytotoxic $CD8^+$ Tcells (CTLs), #2 inhibiting regulatory/suppressor cell populations, #3 making tumor cells visible to immune cells, #4 inhibiting the production of tumor growth factors. This review focuses on the effect of TGF-$\beta$ on T cells, which are differentiated into effector T cells or newly identified tumor-supporting T cells.

Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation

  • Kim, Chang H.;Park, Jeongho;Kim, Myunghoo
    • IMMUNE NETWORK
    • /
    • 제14권6호
    • /
    • pp.277-288
    • /
    • 2014
  • T cells are central players in the regulation of adaptive immunity and immune tolerance. In the periphery, T cell differentiation for maturation and effector function is regulated by a number of factors. Various factors such as antigens, co-stimulation signals, and cytokines regulate T cell differentiation into functionally specialized effector and regulatory T cells. Other factors such as nutrients, micronutrients, nuclear hormones and microbial products provide important environmental cues for T cell differentiation. A mounting body of evidence indicates that the microbial metabolites short-chain fatty acids (SCFAs) have profound effects on T cells and directly and indirectly regulate their differentiation. We review the current status of our understanding of SCFA functions in regulation of peripheral T cell activity and discuss their impact on tissue inflammation.

Innate Lymphoid Cells in Tissue Homeostasis and Disease Pathogenesis

  • Kim, Jihyun;Ryu, Seungwon;Kim, Hye Young
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.301-309
    • /
    • 2021
  • Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. ILCs can be categorized into three groups on the basis of the transcription factors that direct their functions and the cytokines they produce. Notably, these functions parallel the effector functions of T lymphocytes. ILCs play a frontline role in host defense and tissue homeostasis by responding rapidly to environmental factors, conducting effector responses in a tissue-specific manner, and interacting with hematopoietic and non-hematopoietic cells throughout the body. Moreover, recent studies reveal that ILCs are involved in development of various inflammatory diseases, such as respiratory diseases, autoimmune diseases, or cancer. In this review, we discuss the recent findings regarding the biology of ILCs in health and inflammatory diseases.

A "Prime and Deploy" Strategy for Universal Influenza Vaccine Targeting Nucleoprotein Induces Lung-Resident Memory CD8 T cells

  • Haerynn Chung;Eun-Ah Kim;Jun Chang
    • IMMUNE NETWORK
    • /
    • 제21권4호
    • /
    • pp.28.1-28.14
    • /
    • 2021
  • Lung-resident memory T cells (TRM) play an essential role in protecting against pulmonary virus infection. Parenteral administration of DNA vaccine is generally not sufficient to induce lung CD8 TRM cells. This study investigates whether intramuscularly administered DNA vaccine expressing the nucleoprotein (NP) induces lung TRM cells and protects against the influenza B virus. The results show that DNA vaccination poorly generates lung TRM cells and massive secondary effector CD8 T cells entering the lungs after challenge infection do not offer sufficient protection. Nonetheless, intranasal administration of non-replicating adenovirus vector expressing no Ag following priming DNA vaccination deploys NP-specific CD8 TRM cells in the lungs, which subsequently offers complete protection. This novel 'prime and deploy' strategy could be a promising regimen for a universal influenza vaccine targeting the conserved NP Ag.

RNA Metabolism in T Lymphocytes

  • Jin Ouk Choi;Jeong Hyeon Ham;Soo Seok Hwang
    • IMMUNE NETWORK
    • /
    • 제22권5호
    • /
    • pp.39.1-39.18
    • /
    • 2022
  • RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.

Intravenous Mesenchymal Stem Cell Administration Modulates Monocytes/Macrophages and Ameliorates Asthmatic Airway Inflammation in a Murine Asthma Model

  • Mo, Yosep;Kang, Sung-Yoon;Bang, Ji-Young;Kim, Yujin;Jeong, Jiung;Jeong, Eui-Man;Kim, Hye Young;Cho, Sang-Heon;Kang, Hye-Ryun
    • Molecules and Cells
    • /
    • 제45권11호
    • /
    • pp.833-845
    • /
    • 2022
  • Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti-asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.

The Mucosal Immune System for the Development of New Generation Vaccine

  • Yuki, Yoshikazu;Kiyono, Hiroshi
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2003년도 2003 Annual Meeting, BioExhibition and International Symposium
    • /
    • pp.55-62
    • /
    • 2003
  • The mucosal immune system provides a first line of defense against invasion of infectious agents via inhalation, ingestion and sexual contact. For the induction of protective immunity at these invasion sites, one must consider the use of the CMIS, which interconnects inductive tissues, including PP and NALT, and effector tissues of the intestinal, respiratory and genitourinary tracts. In order for the CMIS to induce maximal protective mucosal immunity, co-administration of mucosal adjuvant or use of mucosal antigen delivery vehicle has been shown to be essential. When vaccine antigen is administered via oral or nasal route, antigen-specific Th 1 and Th2 cells, cytotoxic T lymphocytes(CTLs) and IgA B cell responses are effectively induced by the CMIS. In the early stages of induction of mucosal immune response, the uptake of orally or nasally administered antigens is achieved through a unique set of antigen-sampling cells, M cells located in follicle-associated epithelium(FAE) of inductive sites. After successful uptake, the antigens are immediately processed and presented by the underlying DCs for the generation of antigen-specific T cells and IgA committed B cells. These antigen-specific lymphocytes are then home to the distant mucosal effector tissues for the induction of antigen-specific humoral(e.g., IgA) and cell-mediated (e.g., CTL and Th1) immune responses in order to form the first line of defense. Elucidation of the molecular/cellular characteristics of the immunological sequence of mucosal immune response beginning from the antigen sampling and processing/presentation by M cells and mucosal DCs followed by the effector phase with antigen-specific lymphocytes will greatly facilitate the design of a new generation of effective mucosal antigen-specific lymphocytes will greatly facilitate the design of a new generation of a new generation of effective mucosal adjuvants and of a vaccine deliver vehicle that maximizes the use of the CMIS.

  • PDF

Mucosal immunity against parasitic gastrointestinal nematodes

  • Onah, Denis-Nnabuike;Nawa, Yukifumi
    • Parasites, Hosts and Diseases
    • /
    • 제38권4호
    • /
    • pp.209-236
    • /
    • 2000
  • The last two decades witnessed significant advances in the efforts of immune-parasitologists to elucidate the nature and role of the host mucosal defence mechanisms against intestinal nematode parasites. Aided by recent advances in basic immunology and biotechnology with the concomitant development of well defined laboratory models of infection, immunoparasitologists have more precisely analyzed and defined the different immune effector mechanisms during the infection; resulting in great improvement in our current knowledge and understanding of protective immunity against gastrointestinal (GI) nematode parasites. Much of this current understanding comes from experimental studies in laboratory rodents, which have been used as models of livestock and human GI nematode infections. These rodent studies, which have concentrated on Heligmosomoides polygyrus, Nippostrongylus brasiliensis, Strongyloides ratti/5. venezuelensis. Trichinella spiralis and trichuris muris infections in mice and rats, have helped in defining the types of T cell responses that regulate effector mechanisms and the effector mechanisms responsible for worm expulsion. In addition, these studies bear indications that traditionally accepted mechanisms of resistance such as eosinophilia and IgE responses may not play as important roles in protection as were previously conceived. In this review, we shall, from these rodent studies, attempt an overview of the mucosal and other effector responses against intestinal nematode parasites beginning with the indices of immune protection as a model of the protective immune responses that may occur in animals and man.

  • PDF

The Emerging Role of Natural Killer Cells in Innate and Adaptive Immunity

  • Kim, Eun-Mi;Ko, Chang-Bo;Myung, Pyung-Keun;Cho, Daeho;Choi, Inpyo;Kang, Hyung-Sik
    • IMMUNE NETWORK
    • /
    • 제4권4호
    • /
    • pp.205-215
    • /
    • 2004
  • In the early host defense system, effector function of natural killer (NK) cells results in natural killing against target cells such as microbe-infected, malignant, and certain allogenic cells without prior stimulation. NK cell cytotoxicity is selectively regulated by homeostatic prevalence between a repertoire of both activating and inhibitory receptors, and the discrimination of untransformed cells is achieved by recognition of major histocompatibility complex (MHC) class I alleles through inhibitory signals. Although it is well known that the bipotential T/NK progenitors are derived from the common precusor, functional mechanisms in terms of the development of NK cells remain to be further investigated. NK cells are mainly involved in innate immunity, but recent studies have been reported that they also play a critical role in adaptive immune responses through interaction with dendritic cells (DC). This interaction will provide effector functions and development of NK cells, and elucidation of its precise mechanism may lead to therapeutic strategies for effective treatment of several immune diseases.