Acknowledgement
This study was supported by a grant from the National Research Foundation of Korea (NRF-2019R1A2C2087574) and a grant from the MD-PhD/Medical Scientist Training Program through the Korea Health Industry Development Institute (KHIDI), which was funded by the Ministry of Health & Welfare, Republic of Korea.
References
- Bal, S.M., Bernink, J.H., Nagasawa, M., Groot, J., Shikhagaie, M.M., Golebski, K., van Drunen, C.M., Lutter, R., Jonkers, R.E., Hombrink, P., et al. (2016). IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636-645. https://doi.org/10.1038/ni.3444
- Bando, J.K., Liang, H.E., and Locksley, R.M. (2015). Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat. Immunol. 16, 153-160. https://doi.org/10.1038/ni.3057
- Beasley, R. and Hancox, R.J. (2020). Reducing the burden of asthma: time to set research and clinical priorities. Lancet Respir. Med. 8, 943-944. https://doi.org/10.1016/S2213-2600(20)30400-8
- Bernink, J.H., Krabbendam, L., Germar, K., de Jong, E., Gronke, K., Kofoed-Nielsen, M., Munneke, J.M., Hazenberg, M.D., Villaudy, J., and Buskens, C.J. (2015). Interleukin-12 and-23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146-160. https://doi.org/10.1016/j.immuni.2015.06.019
- Bhat, T.A., Panzica, L., Kalathil, S.G., and Thanavala, Y. (2015). Immune dysfunction in patients with chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 12 Suppl 2, S169-S175.
- Chang, Y.J., Kim, H.Y., Albacker, L.A., Baumgarth, N., McKenzie, A.N., Smith, D.E., Dekruyff, R.H., and Umetsu, D.T. (2011). Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631-638. https://doi.org/10.1038/ni.2045
- Chea, S., Possot, C., Perchet, T., Petit, M., Cumano, A., and Golub, R. (2015). CXCR6 expression is important for retention and circulation of ILC precursors. Mediators Inflamm. 2015, 368427. https://doi.org/10.1155/2015/368427
- Constantinides, M.G., Gudjonson, H., McDonald, B.D., Ishizuka, I.E., Verhoef, P.A., Dinner, A.R., and Bendelac, A. (2015). PLZF expression maps the early stages of ILC1 lineage development. Proc. Natl. Acad. Sci. U. S. A. 112, 5123-5128. https://doi.org/10.1073/pnas.1423244112
- Constantinides, M.G., McDonald, B.D., Verhoef, P.A., and Bendelac, A. (2014). A committed precursor to innate lymphoid cells. Nature 508, 397-401. https://doi.org/10.1038/nature13047
- Cortez, V.S. and Colonna, M. (2016). Diversity and function of group 1 innate lymphoid cells. Immunol. Lett. 179, 19-24. https://doi.org/10.1016/j.imlet.2016.07.005
- Dadi, S., Chhangawala, S., Whitlock, B.M., Franklin, R.A., Luo, C.T., Oh, S.A., Toure, A., Pritykin, Y., Huse, M., Leslie, C.S., et al. (2016). Cancer immunosurveillance by tissue-resident innate lymphoid cells and innatelike T cells. Cell 164, 365-377. https://doi.org/10.1016/j.cell.2016.01.002
- De Grove, K.C., Provoost, S., Verhamme, F.M., Bracke, K.R., Joos, G.F., Maes, T., and Brusselle, G.G. (2016). Characterization and quantification of innate lymphoid cell subsets in human lung. PLoS One 11, e0145961. https://doi.org/10.1371/journal.pone.0145961
- Deem, T.L. and Cook-Mills, J.M. (2004). Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species. Blood 104, 2385-2393. https://doi.org/10.1182/blood-2004-02-0665
- Degn, M., Modvig, S., Dyring-Andersen, B., Bonefeld, C.M., Frederiksen, J.L., Geisler, C., and von Essen, M.R. (2016). Increased prevalence of lymphoid tissue inducer cells in the cerebrospinal fluid of patients with early multiple sclerosis. Mult. Scler. 22, 1013-1020. https://doi.org/10.1177/1352458515609795
- Diefenbach, A., Colonna, M., and Koyasu, S. (2014). Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354-365. https://doi.org/10.1016/j.immuni.2014.09.005
- Doherty, T.A. and Broide, D.H. (2019). Airway innate lymphoid cells in the induction and regulation of allergy. Allergol. Int. 68, 9-16. https://doi.org/10.1016/j.alit.2018.11.001
- Eberl, G., Colonna, M., Di Santo, J.P., and McKenzie, A.N. (2015). Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566. https://doi.org/10.1126/science.aaa6566
- Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E., and Becher, B. (2010). IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol. 11, 1030-1038. https://doi.org/10.1038/ni.1947
- Entwistle, L.J., Gregory, L.G., Oliver, R.A., Branchett, W.J., Puttur, F., and Lloyd, C.M. (2020). Pulmonary group 2 innate lymphoid cell phenotype is context specific: determining the effect of strain, location, and stimuli. Front. Immunol. 10, 3114. https://doi.org/10.3389/fimmu.2019.03114
- Erle, D.J., Briskin, M.J., Butcher, E.C., Garcia-Pardo, A., Lazarovits, A.I., and Tidswell, M. (1994). Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J. Immunol. 153, 517-528.
- Everaere, L., Ait-Yahia, S., Molendi-Coste, O., Vorng, H., Quemener, S., LeVu, P., Fleury, S., Bouchaert, E., Fan, Y., Duez, C., et al. (2016). Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity. J. Allergy Clin. Immunol. 138, 1309-1318.e11. https://doi.org/10.1016/j.jaci.2016.03.019
- Filippi, M., Bar-Or, A., Piehl, F., Preziosa, P., Solari, A., Vukusic, S., and Rocca, M.A. (2018). Multiple sclerosis. Nat. Rev. Dis. Primers 4, 43. https://doi.org/10.1038/s41572-018-0041-4
- Fuchs, A., Vermi, W., Lee, J.S., Lonardi, S., Gilfillan, S., Newberry, R.D., Cella, M., and Colonna, M. (2013). Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38, 769-781. https://doi.org/10.1016/j.immuni.2013.02.010
- Gao, Y., Souza-Fonseca-Guimaraes, F., Bald, T., Ng, S.S., Young, A., Ngiow, S.F., Rautela, J., Straube, J., Waddell, N., Blake, S.J., et al. (2017). Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004-1015. https://doi.org/10.1038/ni.3800
- Gascoyne, D.M., Long, E., Veiga-Fernandes, H., de Boer, J., Williams, O., Seddon, B., Coles, M., Kioussis, D., and Brady, H.J.M. (2009). The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118-1124. https://doi.org/10.1038/ni.1787
- Gasteiger, G., Fan, X., Dikiy, S., Lee, S.Y., and Rudensky, A.Y. (2015). Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981-985. https://doi.org/10.1126/science.aac9593
- Geiger, T.L., Abt, M.C., Gasteiger, G., Firth, M.A., O'Connor, M.H., Geary, C.D., O'Sullivan, T.E., van den Brink, M.R., Pamer, E.G., Hanash, A.M., et al. (2014). Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211, 1723-1731. https://doi.org/10.1084/jem.20140212
- Golebski, K., Layhadi, J.A., Sahiner, U., Steveling-Klein, E.H., Lenormand, M.M., Li, R.C.Y., Bal, S.M., Heesters, B.A., Vila-Nadal, G., Hunewald, O., et al. (2021). Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 54, 291-307.e7. https://doi.org/10.1016/j.immuni.2020.12.013
- Gross, C.C., Schulte-Mecklenbeck, A., Hanning, U., Posevitz-Fejfar, A., Korsukewitz, C., Schwab, N., Meuth, S.G., Wiendl, H., and Klotz, L. (2017). Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets. Mult. Scler. 23, 1025-1030. https://doi.org/10.1177/1352458516662726
- Halim, T.Y., Steer, C.A., Matha, L., Gold, M.J., Martinez-Gonzalez, I., McNagny, K.M., McKenzie, A.N., and Takei, F. (2014). Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425-435. https://doi.org/10.1016/j.immuni.2014.01.011
- Hatfield, J.K. and Brown, M.A. (2015). Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell. Immunol. 297, 69-79. https://doi.org/10.1016/j.cellimm.2015.06.006
- Hazenberg, M.D., Haverkate, N.J.E., van Lier, Y.F., Spits, H., Krabbendam, L., Bemelman, W.A., Buskens, C.J., Blom, B., and Shikhagaie, M.M. (2019). Human ectoenzyme-expressing ILC3: immunosuppressive innate cells that are depleted in graft-versus-host disease. Blood Adv. 3, 3650-3660. https://doi.org/10.1182/bloodadvances.2019000176
- Ikutani, M., Yanagibashi, T., Ogasawara, M., Tsuneyama, K., Yamamoto, S., Hattori, Y., Kouro, T., Itakura, A., Nagai, Y., Takaki, S., et al. (2012). Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188, 703-713. https://doi.org/10.4049/jimmunol.1101270
- Irshad, S., Flores-Borja, F., Lawler, K., Monypenny, J., Evans, R., Male, V., Gordon, P., Cheung, A., Gazinska, P., Noor, F., et al. (2017). RORγt+ innate lymphoid cells promote lymph node metastasis of breast cancers. Cancer Res. 77, 1083-1096. https://doi.org/10.1158/0008-5472.CAN-16-0598
- Kearley, J., Silver, J.S., Sanden, C., Liu, Z., Berlin, A.A., White, N., Mori, M., Pham, T.H., Ward, C.K., Criner, G.J., et al. (2015). Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 42, 566-579. https://doi.org/10.1016/j.immuni.2015.02.011
- Kim, C.H., Hashimoto-Hill, S., and Kim, M. (2016a). Migration and tissue tropism of innate lymphoid cells. Trends Immunol. 37, 68-79. https://doi.org/10.1016/j.it.2015.11.003
- Kim, H.Y., DeKruyff, R.H., and Umetsu, D.T. (2010). The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat. Immunol. 11, 577-584. https://doi.org/10.1038/ni.1892
- Kim, H.Y., Lee, H.J., Chang, Y.J., Pichavant, M., Shore, S.A., Fitzgerald, K.A., Iwakura, Y., Israel, E., Bolger, K., Faul, J., et al. (2014). Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 20, 54-61. https://doi.org/10.1038/nm.3423
- Kim, H.Y., Umetsu, D.T., and Dekruyff, R.H. (2016b). Innate lymphoid cells in asthma: will they take your breath away? Eur. J. Immunol. 46, 795-806. https://doi.org/10.1002/eji.201444557
- Kim, J., Chang, Y., Bae, B., Sohn, K.H., Cho, S.H., Chung, D.H., Kang, H.R., and Kim, H.Y. (2019). Innate immune crosstalk in asthmatic airways: innate lymphoid cells coordinate polarization of lung macrophages. J. Allergy Clin. Immunol. 143, 1769-1782.e11. https://doi.org/10.1016/j.jaci.2018.10.040
- Kim, M.H., Taparowsky, E.J., and Kim, C.H. (2015). Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43, 107-119. https://doi.org/10.1016/j.immuni.2015.06.009
- Kirchberger, S., Royston, D.J., Boulard, O., Thornton, E., Franchini, F., Szabady, R.L., Harrison, O., and Powrie, F. (2013). Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917-931. https://doi.org/10.1084/jem.20122308
- Klose, C.S., Kiss, E.A., Schwierzeck, V., Ebert, K., Hoyler, T., d'Hargues, Y., Goppert, N., Croxford, A.L., Waisman, A., Tanriver, Y., et al. (2013). A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 494, 261-265. https://doi.org/10.1038/nature11813
- Kwong, B., Rua, R., Gao, Y., Flickinger, J., Jr., Wang, Y., Kruhlak, M.J., Zhu, J., Vivier, E., McGavern, D.B., and Lazarevic, V. (2017). T-bet-dependent NKp46(+) innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nat. Immunol. 18, 1117-1127. https://doi.org/10.1038/ni.3816
- Lambrecht, B.N. and Hammad, H. (2015). The immunology of asthma. Nat. Immunol. 16, 45-56. https://doi.org/10.1038/ni.3049
- Lapidot, T., Dar, A., and Kollet, O. (2005). How do stem cells find their way home? Blood 106, 1901-1910. https://doi.org/10.1182/blood-2005-04-1417
- Lim, A.I. and Di Santo, J.P. (2019). ILC-poiesis: ensuring tissue ILC differentiation at the right place and time. Eur. J. Immunol. 49, 11-18. https://doi.org/10.1002/eji.201747294
- Lim, A.I., Menegatti, S., Bustamante, J., Le Bourhis, L., Allez, M., Rogge, L., Casanova, J.L., Yssel, H., and Di Santo, J.P. (2016). IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213, 569-583. https://doi.org/10.1084/jem.20151750
- Liu, T., Barrett, N.A., Kanaoka, Y., Yoshimoto, E., Garofalo, D., Cirka, H., Feng, C., and Boyce, J.A. (2018). Type 2 cysteinyl leukotriene receptors drive IL-33-dependent type 2 immunopathology and aspirin sensitivity. J. Immunol. 200, 915-927. https://doi.org/10.4049/jimmunol.1700603
- Liu, T., Wu, J., Zhao, J., Wang, J., Zhang, Y., Liu, L., Cao, L., Liu, Y., and Dong, L. (2015). Type 2 innate lymphoid cells: a novel biomarker of eosinophilic airway inflammation in patients with mild to moderate asthma. Respir. Med. 109, 1391-1396. https://doi.org/10.1016/j.rmed.2015.09.016
- Long, A., Dominguez, D., Qin, L., Chen, S., Fan, J., Zhang, M., Fang, D., Zhang, Y., Kuzel, T.M., and Zhang, B. (2018). Type 2 innate lymphoid cells impede IL-33-mediated tumor suppression. J. Immunol. 201, 3456-3464. https://doi.org/10.4049/jimmunol.1800173
- Luci, C., Reynders, A., Ivanov, I.I., Cognet, C., Chiche, L., Chasson, L., Hardwigsen, J., Anguiano, E., Banchereau, J., Chaussabel, D., et al. (2009). Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75-82. https://doi.org/10.1038/ni.1681
- Lund, S.J., Portillo, A., Cavagnero, K., Baum, R.E., Naji, L.H., Badrani, J.H., Mehta, A., Croft, M., Broide, D.H., and Doherty, T.A. (2017). Leukotriene C4 potentiates IL-33-induced group 2 innate lymphoid cell activation and lung inflammation. J. Immunol. 199, 1096-1104. https://doi.org/10.4049/jimmunol.1601569
- Male, V., Nisoli, I., Kostrzewski, T., Allan, D.S.J., Carlyle, J.R., Lord, G.M., Wack, A., and Brady, H.J.M. (2014). The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J. Exp. Med. 211, 635-642. https://doi.org/10.1084/jem.20132398
- Meininger, I., Carrasco, A., Rao, A., Soini, T., Kokkinou, E., and Mjosberg, J. (2020). Tissue-specific features of innate lymphoid cells. Trends Immunol. 41, 902-917. https://doi.org/10.1016/j.it.2020.08.009
- Mjosberg, J. and Eidsmo, L. (2014). Update on innate lymphoid cells in atopic and non-atopic inflammation in the airways and skin. Clin. Exp. Allergy 44, 1033-1043. https://doi.org/10.1111/cea.12353
- Montaldo, E., Juelke, K., and Romagnani, C. (2015). Group 3 innate lymphoid cells (ILC3s): origin, differentiation, and plasticity in humans and mice. Eur. J. Immunol. 45, 2171-2182. https://doi.org/10.1002/eji.201545598
- Monticelli, L.A., Osborne, L.C., Noti, M., Tran, S.V., Zaiss, D.M., and Artis, D. (2015). IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc. Natl. Acad. Sci. U. S. A. 112, 10762-10767. https://doi.org/10.1073/pnas.1509070112
- Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., Alenghat, T., Ziegler, C.G.K., Doering, T.A., Angelosanto, J.M., Laidlaw, B.J., Yang, C.Y., Sathaliyawala, T., et al. (2011). Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045-1054. https://doi.org/10.1038/ni.2131
- Moral, J.A., Leung, J., Rojas, L.A., Ruan, J., Zhao, J., Sethna, Z., Ramnarain, A., Gasmi, B., Gururajan, M., Redmond, D., et al. (2020). ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579, 130-135. https://doi.org/10.1038/s41586-020-2015-4
- Morita, H., Kubo, T., Ruckert, B., Ravindran, A., Soyka, M.B., Rinaldi, A.O., Sugita, K., Wawrzyniak, M., Wawrzyniak, P., Motomura, K., et al. (2019). Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J. Allergy Clin. Immunol. 143, 2190-2201.e9. https://doi.org/10.1016/j.jaci.2018.12.1018
- Morita, H., Moro, K., and Koyasu, S. (2016). Innate lymphoid cells in allergic and nonallergic inflammation. J. Allergy Clin. Immunol. 138, 1253-1264. https://doi.org/10.1016/j.jaci.2016.09.011
- Moro, K., Kabata, H., Tanabe, M., Koga, S., Takeno, N., Mochizuki, M., Fukunaga, K., Asano, K., Betsuyaku, T., and Koyasu, S. (2016). Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat. Immunol. 17, 76-86. https://doi.org/10.1038/ni.3309
- Ni, L. and Dong, C. (2018). Roles of myeloid and lymphoid cells in the pathogenesis of chronic obstructive pulmonary disease. Front. Immunol. 9, 1431. https://doi.org/10.3389/fimmu.2018.01431
- O'Sullivan, T.E. (2019). Dazed and confused: NK cells. Front. Immunol. 10, 2235. https://doi.org/10.3389/fimmu.2019.02235
- Panda, S.K. and Colonna, M. (2019). Innate lymphoid cells in mucosal immunity. Front. Immunol. 10, 861 https://doi.org/10.3389/fimmu.2019.00861
- Park, S.M., Do-Thi, V.A., Lee, J.O., Lee, H., and Kim, Y.S. (2020). Interleukin-9 inhibits lung metastasis of melanoma through stimulating anti-tumor M1 macrophages. Mol. Cells 43, 479-490. https://doi.org/10.14348/molcells.2020.0047
- Patman, G. (2015). Immunology: gut migration of innate lymphoid cells. Nat. Rev. Gastroenterol. Hepatol. 12, 430.
- Perry, J.S., Han, S., Xu, Q., Herman, M.L., Kennedy, L.B., Csako, G., and Bielekova, B. (2012). Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci. Transl. Med. 4, 145ra106. https://doi.org/10.1126/scitranslmed.3004140
- Peters, C.P., Mjosberg, J.M., Bernink, J.H., and Spits, H. (2016). Innate lymphoid cells in inflammatory bowel diseases. Immunol. Lett. 172, 124-131. https://doi.org/10.1016/j.imlet.2015.10.004
- Possot, C., Schmutz, S., Chea, S., Boucontet, L., Louise, A., Cumano, A., and Golub, R. (2011). Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. Nat. Immunol. 12, 949-958. https://doi.org/10.1038/ni.2105
- Rabe, K.F. and Watz, H. (2017). Chronic obstructive pulmonary disease. Lancet 389, 1931-1940. https://doi.org/10.1016/S0140-6736(17)31222-9
- Reich, D.S., Lucchinetti, C.F., and Calabresi, P.A. (2018). Multiple sclerosis. N. Engl. J. Med. 378, 169-180. https://doi.org/10.1056/NEJMra1401483
- Salimi, M., Stoger, L., Liu, W., Go, S., Pavord, I., Klenerman, P., Ogg, G., and Xue, L. (2017). Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines. J. Allergy Clin. Immunol. 140, 1090-1100.e11. https://doi.org/10.1016/j.jaci.2016.12.958
- Saranchova, I., Han, J., Zaman, R., Arora, H., Huang, H., Fenninger, F., Choi, K.B., Munro, L., Pfeifer, C.G., Welch, I., et al. (2018). Type 2 innate lymphocytes actuate immunity against tumours and limit cancer metastasis. Sci. Rep. 8, 2924. https://doi.org/10.1038/s41598-018-20608-6
- Scandella, E., Bolinger, B., Lattmann, E., Miller, S., Favre, S., Littman, D.R., Finke, D., Luther, S.A., Junt, T., and Ludewig, B. (2008). Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat. Immunol. 9, 667-675. https://doi.org/10.1038/ni.1605
- Scanlon, S.T. and McKenzie, A.N. (2012). Type 2 innate lymphoid cells: new players in asthma and allergy. Curr. Opin. Immunol. 24, 707-712. https://doi.org/10.1016/j.coi.2012.08.009
- Serafini, N., Klein Wolterink, R.G., Satoh-Takayama, N., Xu, W., Vosshenrich, C.A., Hendriks, R.W., and Di Santo, J.P. (2014). Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. J. Exp. Med. 211, 199-208. https://doi.org/10.1084/jem.20131038
- Silver, J.S., Kearley, J., Copenhaver, A.M., Sanden, C., Mori, M., Yu, L., Pritchard, G.H., Berlin, A.A., Hunter, C.A., Bowler, R., et al. (2016). Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626-635. https://doi.org/10.1038/ni.3443
- Smith, S.G., Chen, R., Kjarsgaard, M., Huang, C., Oliveria, J.P., O'Byrne, P.M., Gauvreau, G.M., Boulet, L.P., Lemiere, C., Martin, J., et al. (2016). Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 137, 75-86.e8. https://doi.org/10.1016/j.jaci.2015.05.037
- Spits, H. and Cupedo, T. (2012). Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647-675. https://doi.org/10.1146/annurev-immunol-020711-075053
- Suzuki, M., Sze, M.A., Campbell, J.D., Brothers, J.F., Lenburg, M.E., McDonough, J.E., Elliott, W.M., Cooper, J.D., Spira, A., and Hogg, J.C. (2017). The cellular and molecular determinants of emphysematous destruction in COPD. Sci. Rep. 7, 9562. https://doi.org/10.1038/s41598-017-10126-2
- Tanriver, Y. and Diefenbach, A. (2014). Transcription factors controlling development and function of innate lymphoid cells. Int. Immunol. 26, 119-128. https://doi.org/10.1093/intimm/dxt063
- Trabanelli, S., Chevalier, M.F., Martinez-Usatorre, A., Gomez-Cadena, A., Salome, B., Lecciso, M., Salvestrini, V., Verdeil, G., Racle, J., Papayannidis, C., et al. (2017). Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat. Commun. 8, 593. https://doi.org/10.1038/s41467-017-00678-2
- van de Pavert, S.A., Olivier, B.J., Goverse, G., Vondenhoff, M.F., Greuter, M., Beke, P., Kusser, K., Hopken, U.E., Lipp, M., Niederreither, K., et al. (2009). Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat. Immunol. 10, 1193-1199. https://doi.org/10.1038/ni.1789
- Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., Koyasu, S., Locksley, R.M., McKenzie, A.N.J., Mebius, R.E., et al. (2018). Innate lymphoid cells: 10 years on. Cell 174, 1054-1066. https://doi.org/10.1016/j.cell.2018.07.017
- Walker, J.A., Clark, P.A., Crisp, A., Barlow, J.L., Szeto, A., Ferreira, A.C.F., Rana, B.M.J., Jolin, H.E., Rodriguez-Rodriguez, N., Sivasubramaniam, M., et al. (2019). Polychromic reporter mice reveal unappreciated innate lymphoid cell progenitor heterogeneity and elusive ILC3 progenitors in bone marrow. Immunity 51, 104-118.e7. https://doi.org/10.1016/j.immuni.2019.05.002
- Wan, J., Wu, Y., Huang, L., Tian, Y., Ji, X., Abdelaziz, M.H., Cai, W., Dineshkumar, K., Lei, Y., Yao, S., et al. (2021). ILC2-derived IL-9 inhibits colorectal cancer progression by activating CD8(+) T cells. Cancer Lett. 502, 34-43. https://doi.org/10.1016/j.canlet.2021.01.002
- Wang, S., Xia, P., Chen, Y., Qu, Y., Xiong, Z., Ye, B., Du, Y., Tian, Y., Yin, Z., Xu, Z., et al. (2017). Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171, 201-216.e18. https://doi.org/10.1016/j.cell.2017.07.027
- Wills-Karp, M. and Finkelman, F.D. (2011). Innate lymphoid cells wield a double-edged sword: type 2 cytokine-producing innate lymphoid cells are present in human and mouse lungs, where they contribute to both type 2 immune responses and tissue repair. Nat. Immunol. 12, 1025-1028. https://doi.org/10.1038/ni.2142
- Wolk, K., Kunz, S., Witte, E., Friedrich, M., Asadullah, K., and Sabat, R. (2004). IL-22 increases the innate immunity of tissues. Immunity 21, 241-254. https://doi.org/10.1016/j.immuni.2004.07.007
- Wolterink, R.G., KleinJan, A., van Nimwegen, M., Bergen, I., de Bruijn, M., Levani, Y., and Hendriks, R.W. (2012). Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur. J. Immunol. 42, 1106-1116. https://doi.org/10.1002/eji.201142018
- Xu, W., Domingues, R.G., Fonseca-Pereira, D., Ferreira, M., Ribeiro, H., Lopez-Lastra, S., Motomura, Y., Moreira-Santos, L., Bihl, F., Braud, V., et al. (2015). NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10, 2043-2054. https://doi.org/10.1016/j.celrep.2015.02.057
- Yagi, R., Zhong, C., Northrup, D.L., Yu, F., Bouladoux, N., Spencer, S., Hu, G., Barron, L., Sharma, S., Nakayama, T., et al. (2014). The transcription factor GATA3 is critical for the development of all IL-7Ralpha-expressing innate lymphoid cells. Immunity 40, 378-388. https://doi.org/10.1016/j.immuni.2014.01.012
- Zeng, B., Shi, S., Ashworth, G., Dong, C., Liu, J., and Xing, F. (2019). ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 10, 315. https://doi.org/10.1038/s41419-019-1540-2
- Zlotoff, D.A., Sambandam, A., Logan, T.D., Bell, J.J., Schwarz, B.A., and Bhandoola, A. (2010). CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115, 1897-1905. https://doi.org/10.1182/blood-2009-08-237784
- Zook, E.C. and Kee, B.L. (2016). Development of innate lymphoid cells. Nat. Immunol. 17, 775-782. https://doi.org/10.1038/ni.3481
Cited by
- Interactions between NCR+ILC3s and the Microbiome in the Airways Shape Asthma Severity vol.21, pp.4, 2021, https://doi.org/10.4110/in.2021.21.e25
- Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0101