DOI QR코드

DOI QR Code

Innate Lymphoid Cells in Tissue Homeostasis and Disease Pathogenesis

  • Kim, Jihyun (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Ryu, Seungwon (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Kim, Hye Young (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine)
  • Received : 2021.03.06
  • Accepted : 2021.03.30
  • Published : 2021.05.31

Abstract

Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. ILCs can be categorized into three groups on the basis of the transcription factors that direct their functions and the cytokines they produce. Notably, these functions parallel the effector functions of T lymphocytes. ILCs play a frontline role in host defense and tissue homeostasis by responding rapidly to environmental factors, conducting effector responses in a tissue-specific manner, and interacting with hematopoietic and non-hematopoietic cells throughout the body. Moreover, recent studies reveal that ILCs are involved in development of various inflammatory diseases, such as respiratory diseases, autoimmune diseases, or cancer. In this review, we discuss the recent findings regarding the biology of ILCs in health and inflammatory diseases.

Keywords

Acknowledgement

This study was supported by a grant from the National Research Foundation of Korea (NRF-2019R1A2C2087574) and a grant from the MD-PhD/Medical Scientist Training Program through the Korea Health Industry Development Institute (KHIDI), which was funded by the Ministry of Health & Welfare, Republic of Korea.

References

  1. Bal, S.M., Bernink, J.H., Nagasawa, M., Groot, J., Shikhagaie, M.M., Golebski, K., van Drunen, C.M., Lutter, R., Jonkers, R.E., Hombrink, P., et al. (2016). IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636-645. https://doi.org/10.1038/ni.3444
  2. Bando, J.K., Liang, H.E., and Locksley, R.M. (2015). Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat. Immunol. 16, 153-160. https://doi.org/10.1038/ni.3057
  3. Beasley, R. and Hancox, R.J. (2020). Reducing the burden of asthma: time to set research and clinical priorities. Lancet Respir. Med. 8, 943-944. https://doi.org/10.1016/S2213-2600(20)30400-8
  4. Bernink, J.H., Krabbendam, L., Germar, K., de Jong, E., Gronke, K., Kofoed-Nielsen, M., Munneke, J.M., Hazenberg, M.D., Villaudy, J., and Buskens, C.J. (2015). Interleukin-12 and-23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146-160. https://doi.org/10.1016/j.immuni.2015.06.019
  5. Bhat, T.A., Panzica, L., Kalathil, S.G., and Thanavala, Y. (2015). Immune dysfunction in patients with chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 12 Suppl 2, S169-S175.
  6. Chang, Y.J., Kim, H.Y., Albacker, L.A., Baumgarth, N., McKenzie, A.N., Smith, D.E., Dekruyff, R.H., and Umetsu, D.T. (2011). Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631-638. https://doi.org/10.1038/ni.2045
  7. Chea, S., Possot, C., Perchet, T., Petit, M., Cumano, A., and Golub, R. (2015). CXCR6 expression is important for retention and circulation of ILC precursors. Mediators Inflamm. 2015, 368427. https://doi.org/10.1155/2015/368427
  8. Constantinides, M.G., Gudjonson, H., McDonald, B.D., Ishizuka, I.E., Verhoef, P.A., Dinner, A.R., and Bendelac, A. (2015). PLZF expression maps the early stages of ILC1 lineage development. Proc. Natl. Acad. Sci. U. S. A. 112, 5123-5128. https://doi.org/10.1073/pnas.1423244112
  9. Constantinides, M.G., McDonald, B.D., Verhoef, P.A., and Bendelac, A. (2014). A committed precursor to innate lymphoid cells. Nature 508, 397-401. https://doi.org/10.1038/nature13047
  10. Cortez, V.S. and Colonna, M. (2016). Diversity and function of group 1 innate lymphoid cells. Immunol. Lett. 179, 19-24. https://doi.org/10.1016/j.imlet.2016.07.005
  11. Dadi, S., Chhangawala, S., Whitlock, B.M., Franklin, R.A., Luo, C.T., Oh, S.A., Toure, A., Pritykin, Y., Huse, M., Leslie, C.S., et al. (2016). Cancer immunosurveillance by tissue-resident innate lymphoid cells and innatelike T cells. Cell 164, 365-377. https://doi.org/10.1016/j.cell.2016.01.002
  12. De Grove, K.C., Provoost, S., Verhamme, F.M., Bracke, K.R., Joos, G.F., Maes, T., and Brusselle, G.G. (2016). Characterization and quantification of innate lymphoid cell subsets in human lung. PLoS One 11, e0145961. https://doi.org/10.1371/journal.pone.0145961
  13. Deem, T.L. and Cook-Mills, J.M. (2004). Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species. Blood 104, 2385-2393. https://doi.org/10.1182/blood-2004-02-0665
  14. Degn, M., Modvig, S., Dyring-Andersen, B., Bonefeld, C.M., Frederiksen, J.L., Geisler, C., and von Essen, M.R. (2016). Increased prevalence of lymphoid tissue inducer cells in the cerebrospinal fluid of patients with early multiple sclerosis. Mult. Scler. 22, 1013-1020. https://doi.org/10.1177/1352458515609795
  15. Diefenbach, A., Colonna, M., and Koyasu, S. (2014). Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354-365. https://doi.org/10.1016/j.immuni.2014.09.005
  16. Doherty, T.A. and Broide, D.H. (2019). Airway innate lymphoid cells in the induction and regulation of allergy. Allergol. Int. 68, 9-16. https://doi.org/10.1016/j.alit.2018.11.001
  17. Eberl, G., Colonna, M., Di Santo, J.P., and McKenzie, A.N. (2015). Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566. https://doi.org/10.1126/science.aaa6566
  18. Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E., and Becher, B. (2010). IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol. 11, 1030-1038. https://doi.org/10.1038/ni.1947
  19. Entwistle, L.J., Gregory, L.G., Oliver, R.A., Branchett, W.J., Puttur, F., and Lloyd, C.M. (2020). Pulmonary group 2 innate lymphoid cell phenotype is context specific: determining the effect of strain, location, and stimuli. Front. Immunol. 10, 3114. https://doi.org/10.3389/fimmu.2019.03114
  20. Erle, D.J., Briskin, M.J., Butcher, E.C., Garcia-Pardo, A., Lazarovits, A.I., and Tidswell, M. (1994). Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J. Immunol. 153, 517-528.
  21. Everaere, L., Ait-Yahia, S., Molendi-Coste, O., Vorng, H., Quemener, S., LeVu, P., Fleury, S., Bouchaert, E., Fan, Y., Duez, C., et al. (2016). Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity. J. Allergy Clin. Immunol. 138, 1309-1318.e11. https://doi.org/10.1016/j.jaci.2016.03.019
  22. Filippi, M., Bar-Or, A., Piehl, F., Preziosa, P., Solari, A., Vukusic, S., and Rocca, M.A. (2018). Multiple sclerosis. Nat. Rev. Dis. Primers 4, 43. https://doi.org/10.1038/s41572-018-0041-4
  23. Fuchs, A., Vermi, W., Lee, J.S., Lonardi, S., Gilfillan, S., Newberry, R.D., Cella, M., and Colonna, M. (2013). Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38, 769-781. https://doi.org/10.1016/j.immuni.2013.02.010
  24. Gao, Y., Souza-Fonseca-Guimaraes, F., Bald, T., Ng, S.S., Young, A., Ngiow, S.F., Rautela, J., Straube, J., Waddell, N., Blake, S.J., et al. (2017). Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004-1015. https://doi.org/10.1038/ni.3800
  25. Gascoyne, D.M., Long, E., Veiga-Fernandes, H., de Boer, J., Williams, O., Seddon, B., Coles, M., Kioussis, D., and Brady, H.J.M. (2009). The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118-1124. https://doi.org/10.1038/ni.1787
  26. Gasteiger, G., Fan, X., Dikiy, S., Lee, S.Y., and Rudensky, A.Y. (2015). Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981-985. https://doi.org/10.1126/science.aac9593
  27. Geiger, T.L., Abt, M.C., Gasteiger, G., Firth, M.A., O'Connor, M.H., Geary, C.D., O'Sullivan, T.E., van den Brink, M.R., Pamer, E.G., Hanash, A.M., et al. (2014). Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211, 1723-1731. https://doi.org/10.1084/jem.20140212
  28. Golebski, K., Layhadi, J.A., Sahiner, U., Steveling-Klein, E.H., Lenormand, M.M., Li, R.C.Y., Bal, S.M., Heesters, B.A., Vila-Nadal, G., Hunewald, O., et al. (2021). Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 54, 291-307.e7. https://doi.org/10.1016/j.immuni.2020.12.013
  29. Gross, C.C., Schulte-Mecklenbeck, A., Hanning, U., Posevitz-Fejfar, A., Korsukewitz, C., Schwab, N., Meuth, S.G., Wiendl, H., and Klotz, L. (2017). Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets. Mult. Scler. 23, 1025-1030. https://doi.org/10.1177/1352458516662726
  30. Halim, T.Y., Steer, C.A., Matha, L., Gold, M.J., Martinez-Gonzalez, I., McNagny, K.M., McKenzie, A.N., and Takei, F. (2014). Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425-435. https://doi.org/10.1016/j.immuni.2014.01.011
  31. Hatfield, J.K. and Brown, M.A. (2015). Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell. Immunol. 297, 69-79. https://doi.org/10.1016/j.cellimm.2015.06.006
  32. Hazenberg, M.D., Haverkate, N.J.E., van Lier, Y.F., Spits, H., Krabbendam, L., Bemelman, W.A., Buskens, C.J., Blom, B., and Shikhagaie, M.M. (2019). Human ectoenzyme-expressing ILC3: immunosuppressive innate cells that are depleted in graft-versus-host disease. Blood Adv. 3, 3650-3660. https://doi.org/10.1182/bloodadvances.2019000176
  33. Ikutani, M., Yanagibashi, T., Ogasawara, M., Tsuneyama, K., Yamamoto, S., Hattori, Y., Kouro, T., Itakura, A., Nagai, Y., Takaki, S., et al. (2012). Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188, 703-713. https://doi.org/10.4049/jimmunol.1101270
  34. Irshad, S., Flores-Borja, F., Lawler, K., Monypenny, J., Evans, R., Male, V., Gordon, P., Cheung, A., Gazinska, P., Noor, F., et al. (2017). RORγt+ innate lymphoid cells promote lymph node metastasis of breast cancers. Cancer Res. 77, 1083-1096. https://doi.org/10.1158/0008-5472.CAN-16-0598
  35. Kearley, J., Silver, J.S., Sanden, C., Liu, Z., Berlin, A.A., White, N., Mori, M., Pham, T.H., Ward, C.K., Criner, G.J., et al. (2015). Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 42, 566-579. https://doi.org/10.1016/j.immuni.2015.02.011
  36. Kim, C.H., Hashimoto-Hill, S., and Kim, M. (2016a). Migration and tissue tropism of innate lymphoid cells. Trends Immunol. 37, 68-79. https://doi.org/10.1016/j.it.2015.11.003
  37. Kim, H.Y., DeKruyff, R.H., and Umetsu, D.T. (2010). The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat. Immunol. 11, 577-584. https://doi.org/10.1038/ni.1892
  38. Kim, H.Y., Lee, H.J., Chang, Y.J., Pichavant, M., Shore, S.A., Fitzgerald, K.A., Iwakura, Y., Israel, E., Bolger, K., Faul, J., et al. (2014). Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 20, 54-61. https://doi.org/10.1038/nm.3423
  39. Kim, H.Y., Umetsu, D.T., and Dekruyff, R.H. (2016b). Innate lymphoid cells in asthma: will they take your breath away? Eur. J. Immunol. 46, 795-806. https://doi.org/10.1002/eji.201444557
  40. Kim, J., Chang, Y., Bae, B., Sohn, K.H., Cho, S.H., Chung, D.H., Kang, H.R., and Kim, H.Y. (2019). Innate immune crosstalk in asthmatic airways: innate lymphoid cells coordinate polarization of lung macrophages. J. Allergy Clin. Immunol. 143, 1769-1782.e11. https://doi.org/10.1016/j.jaci.2018.10.040
  41. Kim, M.H., Taparowsky, E.J., and Kim, C.H. (2015). Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43, 107-119. https://doi.org/10.1016/j.immuni.2015.06.009
  42. Kirchberger, S., Royston, D.J., Boulard, O., Thornton, E., Franchini, F., Szabady, R.L., Harrison, O., and Powrie, F. (2013). Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917-931. https://doi.org/10.1084/jem.20122308
  43. Klose, C.S., Kiss, E.A., Schwierzeck, V., Ebert, K., Hoyler, T., d'Hargues, Y., Goppert, N., Croxford, A.L., Waisman, A., Tanriver, Y., et al. (2013). A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 494, 261-265. https://doi.org/10.1038/nature11813
  44. Kwong, B., Rua, R., Gao, Y., Flickinger, J., Jr., Wang, Y., Kruhlak, M.J., Zhu, J., Vivier, E., McGavern, D.B., and Lazarevic, V. (2017). T-bet-dependent NKp46(+) innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nat. Immunol. 18, 1117-1127. https://doi.org/10.1038/ni.3816
  45. Lambrecht, B.N. and Hammad, H. (2015). The immunology of asthma. Nat. Immunol. 16, 45-56. https://doi.org/10.1038/ni.3049
  46. Lapidot, T., Dar, A., and Kollet, O. (2005). How do stem cells find their way home? Blood 106, 1901-1910. https://doi.org/10.1182/blood-2005-04-1417
  47. Lim, A.I. and Di Santo, J.P. (2019). ILC-poiesis: ensuring tissue ILC differentiation at the right place and time. Eur. J. Immunol. 49, 11-18. https://doi.org/10.1002/eji.201747294
  48. Lim, A.I., Menegatti, S., Bustamante, J., Le Bourhis, L., Allez, M., Rogge, L., Casanova, J.L., Yssel, H., and Di Santo, J.P. (2016). IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213, 569-583. https://doi.org/10.1084/jem.20151750
  49. Liu, T., Barrett, N.A., Kanaoka, Y., Yoshimoto, E., Garofalo, D., Cirka, H., Feng, C., and Boyce, J.A. (2018). Type 2 cysteinyl leukotriene receptors drive IL-33-dependent type 2 immunopathology and aspirin sensitivity. J. Immunol. 200, 915-927. https://doi.org/10.4049/jimmunol.1700603
  50. Liu, T., Wu, J., Zhao, J., Wang, J., Zhang, Y., Liu, L., Cao, L., Liu, Y., and Dong, L. (2015). Type 2 innate lymphoid cells: a novel biomarker of eosinophilic airway inflammation in patients with mild to moderate asthma. Respir. Med. 109, 1391-1396. https://doi.org/10.1016/j.rmed.2015.09.016
  51. Long, A., Dominguez, D., Qin, L., Chen, S., Fan, J., Zhang, M., Fang, D., Zhang, Y., Kuzel, T.M., and Zhang, B. (2018). Type 2 innate lymphoid cells impede IL-33-mediated tumor suppression. J. Immunol. 201, 3456-3464. https://doi.org/10.4049/jimmunol.1800173
  52. Luci, C., Reynders, A., Ivanov, I.I., Cognet, C., Chiche, L., Chasson, L., Hardwigsen, J., Anguiano, E., Banchereau, J., Chaussabel, D., et al. (2009). Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75-82. https://doi.org/10.1038/ni.1681
  53. Lund, S.J., Portillo, A., Cavagnero, K., Baum, R.E., Naji, L.H., Badrani, J.H., Mehta, A., Croft, M., Broide, D.H., and Doherty, T.A. (2017). Leukotriene C4 potentiates IL-33-induced group 2 innate lymphoid cell activation and lung inflammation. J. Immunol. 199, 1096-1104. https://doi.org/10.4049/jimmunol.1601569
  54. Male, V., Nisoli, I., Kostrzewski, T., Allan, D.S.J., Carlyle, J.R., Lord, G.M., Wack, A., and Brady, H.J.M. (2014). The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J. Exp. Med. 211, 635-642. https://doi.org/10.1084/jem.20132398
  55. Meininger, I., Carrasco, A., Rao, A., Soini, T., Kokkinou, E., and Mjosberg, J. (2020). Tissue-specific features of innate lymphoid cells. Trends Immunol. 41, 902-917. https://doi.org/10.1016/j.it.2020.08.009
  56. Mjosberg, J. and Eidsmo, L. (2014). Update on innate lymphoid cells in atopic and non-atopic inflammation in the airways and skin. Clin. Exp. Allergy 44, 1033-1043. https://doi.org/10.1111/cea.12353
  57. Montaldo, E., Juelke, K., and Romagnani, C. (2015). Group 3 innate lymphoid cells (ILC3s): origin, differentiation, and plasticity in humans and mice. Eur. J. Immunol. 45, 2171-2182. https://doi.org/10.1002/eji.201545598
  58. Monticelli, L.A., Osborne, L.C., Noti, M., Tran, S.V., Zaiss, D.M., and Artis, D. (2015). IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc. Natl. Acad. Sci. U. S. A. 112, 10762-10767. https://doi.org/10.1073/pnas.1509070112
  59. Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., Alenghat, T., Ziegler, C.G.K., Doering, T.A., Angelosanto, J.M., Laidlaw, B.J., Yang, C.Y., Sathaliyawala, T., et al. (2011). Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045-1054. https://doi.org/10.1038/ni.2131
  60. Moral, J.A., Leung, J., Rojas, L.A., Ruan, J., Zhao, J., Sethna, Z., Ramnarain, A., Gasmi, B., Gururajan, M., Redmond, D., et al. (2020). ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579, 130-135. https://doi.org/10.1038/s41586-020-2015-4
  61. Morita, H., Kubo, T., Ruckert, B., Ravindran, A., Soyka, M.B., Rinaldi, A.O., Sugita, K., Wawrzyniak, M., Wawrzyniak, P., Motomura, K., et al. (2019). Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J. Allergy Clin. Immunol. 143, 2190-2201.e9. https://doi.org/10.1016/j.jaci.2018.12.1018
  62. Morita, H., Moro, K., and Koyasu, S. (2016). Innate lymphoid cells in allergic and nonallergic inflammation. J. Allergy Clin. Immunol. 138, 1253-1264. https://doi.org/10.1016/j.jaci.2016.09.011
  63. Moro, K., Kabata, H., Tanabe, M., Koga, S., Takeno, N., Mochizuki, M., Fukunaga, K., Asano, K., Betsuyaku, T., and Koyasu, S. (2016). Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat. Immunol. 17, 76-86. https://doi.org/10.1038/ni.3309
  64. Ni, L. and Dong, C. (2018). Roles of myeloid and lymphoid cells in the pathogenesis of chronic obstructive pulmonary disease. Front. Immunol. 9, 1431. https://doi.org/10.3389/fimmu.2018.01431
  65. O'Sullivan, T.E. (2019). Dazed and confused: NK cells. Front. Immunol. 10, 2235. https://doi.org/10.3389/fimmu.2019.02235
  66. Panda, S.K. and Colonna, M. (2019). Innate lymphoid cells in mucosal immunity. Front. Immunol. 10, 861 https://doi.org/10.3389/fimmu.2019.00861
  67. Park, S.M., Do-Thi, V.A., Lee, J.O., Lee, H., and Kim, Y.S. (2020). Interleukin-9 inhibits lung metastasis of melanoma through stimulating anti-tumor M1 macrophages. Mol. Cells 43, 479-490. https://doi.org/10.14348/molcells.2020.0047
  68. Patman, G. (2015). Immunology: gut migration of innate lymphoid cells. Nat. Rev. Gastroenterol. Hepatol. 12, 430.
  69. Perry, J.S., Han, S., Xu, Q., Herman, M.L., Kennedy, L.B., Csako, G., and Bielekova, B. (2012). Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci. Transl. Med. 4, 145ra106. https://doi.org/10.1126/scitranslmed.3004140
  70. Peters, C.P., Mjosberg, J.M., Bernink, J.H., and Spits, H. (2016). Innate lymphoid cells in inflammatory bowel diseases. Immunol. Lett. 172, 124-131. https://doi.org/10.1016/j.imlet.2015.10.004
  71. Possot, C., Schmutz, S., Chea, S., Boucontet, L., Louise, A., Cumano, A., and Golub, R. (2011). Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. Nat. Immunol. 12, 949-958. https://doi.org/10.1038/ni.2105
  72. Rabe, K.F. and Watz, H. (2017). Chronic obstructive pulmonary disease. Lancet 389, 1931-1940. https://doi.org/10.1016/S0140-6736(17)31222-9
  73. Reich, D.S., Lucchinetti, C.F., and Calabresi, P.A. (2018). Multiple sclerosis. N. Engl. J. Med. 378, 169-180. https://doi.org/10.1056/NEJMra1401483
  74. Salimi, M., Stoger, L., Liu, W., Go, S., Pavord, I., Klenerman, P., Ogg, G., and Xue, L. (2017). Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines. J. Allergy Clin. Immunol. 140, 1090-1100.e11. https://doi.org/10.1016/j.jaci.2016.12.958
  75. Saranchova, I., Han, J., Zaman, R., Arora, H., Huang, H., Fenninger, F., Choi, K.B., Munro, L., Pfeifer, C.G., Welch, I., et al. (2018). Type 2 innate lymphocytes actuate immunity against tumours and limit cancer metastasis. Sci. Rep. 8, 2924. https://doi.org/10.1038/s41598-018-20608-6
  76. Scandella, E., Bolinger, B., Lattmann, E., Miller, S., Favre, S., Littman, D.R., Finke, D., Luther, S.A., Junt, T., and Ludewig, B. (2008). Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat. Immunol. 9, 667-675. https://doi.org/10.1038/ni.1605
  77. Scanlon, S.T. and McKenzie, A.N. (2012). Type 2 innate lymphoid cells: new players in asthma and allergy. Curr. Opin. Immunol. 24, 707-712. https://doi.org/10.1016/j.coi.2012.08.009
  78. Serafini, N., Klein Wolterink, R.G., Satoh-Takayama, N., Xu, W., Vosshenrich, C.A., Hendriks, R.W., and Di Santo, J.P. (2014). Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. J. Exp. Med. 211, 199-208. https://doi.org/10.1084/jem.20131038
  79. Silver, J.S., Kearley, J., Copenhaver, A.M., Sanden, C., Mori, M., Yu, L., Pritchard, G.H., Berlin, A.A., Hunter, C.A., Bowler, R., et al. (2016). Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626-635. https://doi.org/10.1038/ni.3443
  80. Smith, S.G., Chen, R., Kjarsgaard, M., Huang, C., Oliveria, J.P., O'Byrne, P.M., Gauvreau, G.M., Boulet, L.P., Lemiere, C., Martin, J., et al. (2016). Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 137, 75-86.e8. https://doi.org/10.1016/j.jaci.2015.05.037
  81. Spits, H. and Cupedo, T. (2012). Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647-675. https://doi.org/10.1146/annurev-immunol-020711-075053
  82. Suzuki, M., Sze, M.A., Campbell, J.D., Brothers, J.F., Lenburg, M.E., McDonough, J.E., Elliott, W.M., Cooper, J.D., Spira, A., and Hogg, J.C. (2017). The cellular and molecular determinants of emphysematous destruction in COPD. Sci. Rep. 7, 9562. https://doi.org/10.1038/s41598-017-10126-2
  83. Tanriver, Y. and Diefenbach, A. (2014). Transcription factors controlling development and function of innate lymphoid cells. Int. Immunol. 26, 119-128. https://doi.org/10.1093/intimm/dxt063
  84. Trabanelli, S., Chevalier, M.F., Martinez-Usatorre, A., Gomez-Cadena, A., Salome, B., Lecciso, M., Salvestrini, V., Verdeil, G., Racle, J., Papayannidis, C., et al. (2017). Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat. Commun. 8, 593. https://doi.org/10.1038/s41467-017-00678-2
  85. van de Pavert, S.A., Olivier, B.J., Goverse, G., Vondenhoff, M.F., Greuter, M., Beke, P., Kusser, K., Hopken, U.E., Lipp, M., Niederreither, K., et al. (2009). Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat. Immunol. 10, 1193-1199. https://doi.org/10.1038/ni.1789
  86. Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., Koyasu, S., Locksley, R.M., McKenzie, A.N.J., Mebius, R.E., et al. (2018). Innate lymphoid cells: 10 years on. Cell 174, 1054-1066. https://doi.org/10.1016/j.cell.2018.07.017
  87. Walker, J.A., Clark, P.A., Crisp, A., Barlow, J.L., Szeto, A., Ferreira, A.C.F., Rana, B.M.J., Jolin, H.E., Rodriguez-Rodriguez, N., Sivasubramaniam, M., et al. (2019). Polychromic reporter mice reveal unappreciated innate lymphoid cell progenitor heterogeneity and elusive ILC3 progenitors in bone marrow. Immunity 51, 104-118.e7. https://doi.org/10.1016/j.immuni.2019.05.002
  88. Wan, J., Wu, Y., Huang, L., Tian, Y., Ji, X., Abdelaziz, M.H., Cai, W., Dineshkumar, K., Lei, Y., Yao, S., et al. (2021). ILC2-derived IL-9 inhibits colorectal cancer progression by activating CD8(+) T cells. Cancer Lett. 502, 34-43. https://doi.org/10.1016/j.canlet.2021.01.002
  89. Wang, S., Xia, P., Chen, Y., Qu, Y., Xiong, Z., Ye, B., Du, Y., Tian, Y., Yin, Z., Xu, Z., et al. (2017). Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171, 201-216.e18. https://doi.org/10.1016/j.cell.2017.07.027
  90. Wills-Karp, M. and Finkelman, F.D. (2011). Innate lymphoid cells wield a double-edged sword: type 2 cytokine-producing innate lymphoid cells are present in human and mouse lungs, where they contribute to both type 2 immune responses and tissue repair. Nat. Immunol. 12, 1025-1028. https://doi.org/10.1038/ni.2142
  91. Wolk, K., Kunz, S., Witte, E., Friedrich, M., Asadullah, K., and Sabat, R. (2004). IL-22 increases the innate immunity of tissues. Immunity 21, 241-254. https://doi.org/10.1016/j.immuni.2004.07.007
  92. Wolterink, R.G., KleinJan, A., van Nimwegen, M., Bergen, I., de Bruijn, M., Levani, Y., and Hendriks, R.W. (2012). Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur. J. Immunol. 42, 1106-1116. https://doi.org/10.1002/eji.201142018
  93. Xu, W., Domingues, R.G., Fonseca-Pereira, D., Ferreira, M., Ribeiro, H., Lopez-Lastra, S., Motomura, Y., Moreira-Santos, L., Bihl, F., Braud, V., et al. (2015). NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10, 2043-2054. https://doi.org/10.1016/j.celrep.2015.02.057
  94. Yagi, R., Zhong, C., Northrup, D.L., Yu, F., Bouladoux, N., Spencer, S., Hu, G., Barron, L., Sharma, S., Nakayama, T., et al. (2014). The transcription factor GATA3 is critical for the development of all IL-7Ralpha-expressing innate lymphoid cells. Immunity 40, 378-388. https://doi.org/10.1016/j.immuni.2014.01.012
  95. Zeng, B., Shi, S., Ashworth, G., Dong, C., Liu, J., and Xing, F. (2019). ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 10, 315. https://doi.org/10.1038/s41419-019-1540-2
  96. Zlotoff, D.A., Sambandam, A., Logan, T.D., Bell, J.J., Schwarz, B.A., and Bhandoola, A. (2010). CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115, 1897-1905. https://doi.org/10.1182/blood-2009-08-237784
  97. Zook, E.C. and Kee, B.L. (2016). Development of innate lymphoid cells. Nat. Immunol. 17, 775-782. https://doi.org/10.1038/ni.3481

Cited by

  1. Interactions between NCR+ILC3s and the Microbiome in the Airways Shape Asthma Severity vol.21, pp.4, 2021, https://doi.org/10.4110/in.2021.21.e25
  2. Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0101