Acknowledgement
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07048813) and Korea University Grant K1807481.
References
- Agea, E., Russano, A., Bistoni, O., Mannucci, R., Nicoletti, I., Corazzi, L., Postle, A.D., De Libero, G., Porcelli, S.A., and Spinozzi, F. (2005). Human CD1-restricted T cell recognition of lipids from pollens. J. Exp. Med. 202, 295-308. https://doi.org/10.1084/jem.20050773
- Akbari, O., Stock, P., Meyer, E., Kronenberg, M., Sidobre, S., Nakayama, T., Taniguchi, M., Grusby, M.J., DeKruyff, R.H., and Umetsu, D.T. (2003). Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9, 582-588. https://doi.org/10.1038/nm851
- Angenieux, C., Salamero, J., Fricker, D., Cazenave, J.P., Goud, B., Hanau, D., and de La Salle, H. (2000). Characterization of CD1e, a third type of CD1 molecule expressed in dendritic cells. J. Biol. Chem. 275, 37757-37764. https://doi.org/10.1074/jbc.M007082200
- Baharom, F., Thomas, S., Rankin, G., Lepzien, R., Pourazar, J., Behndig, A.F., Ahlm, C., Blomberg, A., and Smed-Sorensen, A. (2016). Dendritic cells and monocytes with distinct inflammatory responses reside in lung mucosa of healthy humans. J. Immunol. 196, 4498-4509. https://doi.org/10.4049/jimmunol.1600071
- Balato, A., Lembo, S., Mattii, M., Schiattarella, M., Marino, R., De Paulis, A., Balato, N., and Ayala, F. (2012). IL-33 is secreted by psoriatic keratinocytes and induces pro-inflammatory cytokines via keratinocyte and mast cell activation. Exp. Dermatol. 21, 892-894. https://doi.org/10.1111/exd.12027
- Barral, D.C., Cavallari, M., McCormick, P.J., Garg, S., Magee, A.I., Bonifacino, J.S., De Libero, G., and Brenner, M.B. (2008). CD1a and MHC class I follow a similar endocytic recycling pathway. Traffic 9, 1446-1457. https://doi.org/10.1111/j.1600-0854.2008.00781.x
- Beckman, E.M., Porcelli, S.A., Morita, C.T., Behar, S.M., Furlong, S.T., and Brenner, M.B. (1994). Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372, 691-694. https://doi.org/10.1038/372691a0
- Benlagha, K., Weiss, A., Beavis, A., Teyton, L., and Bendelac, A. (2000). In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895-1903. https://doi.org/10.1084/jem.191.11.1895
- Bertorelli, G., Bocchino, V., Zhou, X., Zanini, A., Bernini, M.V., Damia, R., Di Comite, V., Grima, P., and Olivieri, D. (2000). Dendritic cell number is related to IL-4 expression in the airways of atopic asthmatic subjects. Allergy 55, 449-454. https://doi.org/10.1034/j.1398-9995.2000.055005449.x
- Betts, R.J., Perkovic, A., Mahapatra, S., Del Bufalo, A., Camara, K., Howell, A.R., Martinozzi Teissier, S., De Libero, G., and Mori, L. (2017). Contact sensitizers trigger human CD1-autoreactive T-cell responses. Eur. J. Immunol. 47, 1171-1180. https://doi.org/10.1002/eji.201746939
- Birkinshaw, R.W., Pellicci, D.G., Cheng, T.Y., Keller, A.N., Sandoval-Romero, M., Gras, S., de Jong, A., Uldrich, A.P., Moody, D.B., Godfrey, D.I., et al. (2015). αβ T cell antigen receptor recognition of CD1a presenting self lipid ligands. Nat. Immunol. 16, 258-266. https://doi.org/10.1038/ni.3098
- Bourgeois, E.A., Subramaniam, S., Cheng, T.Y., De Jong, A., Layre, E., Ly, D., Salimi, M., Legaspi, A., Modlin, R.L., Salio, M., et al. (2015). Bee venom processes human skin lipids for presentation by CD1a. J. Exp. Med. 212, 149-163. https://doi.org/10.1084/jem.20141505
- Briken, V., Jackman, R.M., Dasgupta, S., Hoening, S., and Porcelli, S.A. (2002). Intracellular trafficking pathway of newly synthesized CD1b molecules. EMBO J. 21, 825-834. https://doi.org/10.1093/emboj/21.4.825
- Briken, V., Jackman, R.M., Watts, G.F., Rogers, R.A., and Porcelli, S.A. (2000). Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J. Exp. Med. 192, 281-288. https://doi.org/10.1084/jem.192.2.281
- Calabi, F., Jarvis, J.M., Martin, L., and Milstein, C. (1989). Two classes of CD1 genes. Eur. J. Immunol. 19, 285-292. https://doi.org/10.1002/eji.1830190211
- Carbone, F.R. and Gleeson, P.A. (1997). Carbohydrates and antigen recognition by T cells. Glycobiology 7, 725-730. https://doi.org/10.1093/glycob/7.6.725-d
- Cernadas, M., Cavallari, M., Watts, G., Mori, L., De Libero, G., and Brenner, M.B. (2010). Early recycling compartment trafficking of CD1a is essential for its intersection and presentation of lipid antigens. J. Immunol. 184, 1235-1241. https://doi.org/10.4049/jimmunol.0804140
- Cheung, K.L., Jarrett, R., Subramaniam, S., Salimi, M., Gutowska-Owsiak, D., Chen, Y.L., Hardman, C., Xue, L., Cerundolo, V., and Ogg, G. (2016). Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J. Exp. Med. 213, 2399-2412. https://doi.org/10.1084/jem.20160258
- Corbett, A.J., Eckle, S.B., Birkinshaw, R.W., Liu, L., Patel, O., Mahony, J., Chen, Z., Reantragoon, R., Meehan, B., Cao, H., et al. (2014). T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361-365. https://doi.org/10.1038/nature13160
- Cotton, R.N., Cheng, T.Y., Wegrecki, M., Le Nours, J., Orgill, D.P., Pomahac, B., Talbot, S.G., Willis, R.A., Altman, J.D., de Jong, A., et al. (2021). Human skin is colonized by T cells that recognize CD1a independently of lipid. J. Clin. Invest. 131, e140706. https://doi.org/10.1172/JCI140706
- de Jong, A., Cheng, T.Y., Huang, S., Gras, S., Birkinshaw, R.W., Kasmar, A.G., Van Rhijn, I., Pena-Cruz, V., Ruan, D.T., Altman, J.D., et al. (2014). CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat. Immunol. 15, 177-185. https://doi.org/10.1038/ni.2790
- de Jong, A., Pena-Cruz, V., Cheng, T.Y., Clark, R.A., Van Rhijn, I., and Moody, D.B. (2010). CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat. Immunol. 11, 1102-1109. https://doi.org/10.1038/ni.1956
- de Lalla, C., Lepore, M., Piccolo, F.M., Rinaldi, A., Scelfo, A., Garavaglia, C., Mori, L., De Libero, G., Dellabona, P., and Casorati, G. (2011). High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur. J. Immunol. 41, 602-610. https://doi.org/10.1002/eji.201041211
- Facciotti, F., Cavallari, M., Angenieux, C., Garcia-Alles, L.F., Signorino-Gelo, F., Angman, L., Gilleron, M., Prandi, J., Puzo, G., Panza, L., et al. (2011). Fine tuning by human CD1e of lipid-specific immune responses. Proc. Natl. Acad. Sci. U. S. A. 108, 14228-14233. https://doi.org/10.1073/pnas.1108809108
- Gadola, S.D., Zaccai, N.R., Harlos, K., Shepherd, D., Castro-Palomino, J.C., Ritter, G., Schmidt, R.R., Jones, E.Y., and Cerundolo, V. (2002). Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat. Immunol. 3, 721-726. https://doi.org/10.1038/ni821
- Gamerdinger, K., Moulon, C., Karp, D.R., Van Bergen, J., Koning, F., Wild, D., Pflugfelder, U., and Weltzien, H.U. (2003). A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel. J. Exp. Med. 197, 1345-1353. https://doi.org/10.1084/jem.20030121
- Han, M., Hannick, L.I., DiBrino, M., and Robinson, M.A. (1999). Polymorphism of human CD1 genes. Tissue Antigens 54, 122-127. https://doi.org/10.1034/j.1399-0039.1999.540202.x
- Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P., See, P., Wasan, P.S., Wang, X.N., Malinarich, F., Malleret, B., et al. (2012). Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60-73. https://doi.org/10.1016/j.immuni.2012.04.012
- Hardman, C.S., Chen, Y.L., Salimi, M., Jarrett, R., Johnson, D., Jarvinen, V.J., Owens, R.J., Repapi, E., Cousins, D.J., Barlow, J.L., et al. (2017). CD1a presentation of endogenous antigens by group 2 innate lymphoid cells. Sci. Immunol. 2, eaan5918. https://doi.org/10.1126/sciimmunol.aan5918
- Jarrett, R., Salio, M., Lloyd-Lavery, A., Subramaniam, S., Bourgeois, E., Archer, C., Cheung, K.L., Hardman, C., Chandler, D., Salimi, M., et al. (2016). Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite-derived phospholipase. Sci. Transl. Med. 8, 325ra318.
- Kagami, S., Rizzo, H.L., Lee, J.J., Koguchi, Y., and Blauvelt, A. (2010). Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J. Invest. Dermatol. 130, 1373-1383. https://doi.org/10.1038/jid.2009.399
- Kai, K., Tanaka, T., Ide, T., Kawaguchi, A., Noshiro, H., and Aishima, S. (2021). Immunohistochemical analysis of the aggregation of CD1a-positive dendritic cells in resected specimens and its association with surgical outcomes for patients with gallbladder cancer. Transl. Oncol. 14, 100923. https://doi.org/10.1016/j.tranon.2020.100923
- Kaplan, D.H., Igyarto, B.Z., and Gaspari, A.A. (2012). Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol. 12, 114-124. https://doi.org/10.1038/nri3150
- Kasmar, A.G., Van Rhijn, I., Magalhaes, K.G., Young, D.C., Cheng, T.Y., Turner, M.T., Schiefner, A., Kalathur, R.C., Wilson, I.A., Bhati, M., et al. (2013). Cutting Edge: CD1a tetramers and dextramers identify human lipopeptide-specific T cells ex vivo. J. Immunol. 191, 4499-4503. https://doi.org/10.4049/jimmunol.1301660
- Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H., Kondo, E., et al. (1997). CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 278, 1626-1629. https://doi.org/10.1126/science.278.5343.1626
- Kim, J.H., Hu, Y., Yongqing, T., Kim, J., Hughes, V.A., Le Nours, J., Marquez, E.A., Purcell, A.W., Wan, Q., Sugita, M., et al. (2016). CD1a on Langerhans cells controls inflammatory skin disease. Nat. Immunol. 17, 1159-1166. https://doi.org/10.1038/ni.3523
- Kinjo, Y., Tupin, E., Wu, D., Fujio, M., Garcia-Navarro, R., Benhnia, M.R., Zajonc, D.M., Ben-Menachem, G., Ainge, G.D., Painter, G.F., et al. (2006). Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978-986. https://doi.org/10.1038/ni1380
- Kjer-Nielsen, L., Patel, O., Corbett, A.J., Le Nours, J., Meehan, B., Liu, L., Bhati, M., Chen, Z., Kostenko, L., Reantragoon, R., et al. (2012). MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717-723. https://doi.org/10.1038/nature11605
- Lepore, M., de Lalla, C., Gundimeda, S.R., Gsellinger, H., Consonni, M., Garavaglia, C., Sansano, S., Piccolo, F., Scelfo, A., Haussinger, D., et al. (2014). A novel self-lipid antigen targets human T cells against CD1c+ leukemias. J. Exp. Med. 211, 1363-1377. https://doi.org/10.1084/jem.20140410
- Manolova, V., Kistowska, M., Paoletti, S., Baltariu, G.M., Bausinger, H., Hanau, D., Mori, L., and De Libero, G. (2006). Functional CD1a is stabilized by exogenous lipids. Eur. J. Immunol. 36, 1083-1092. https://doi.org/10.1002/eji.200535544
- Matsuda, J.L., Naidenko, O.V., Gapin, L., Nakayama, T., Taniguchi, M., Wang, C.R., Koezuka, Y., and Kronenberg, M. (2000). Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741-754. https://doi.org/10.1084/jem.192.5.741
- Miller, C.J., McChesney, M., and Moore, P.F. (1992). Langerhans cells, macrophages and lymphocyte subsets in the cervix and vagina of rhesus macaques. Lab. Invest. 67, 628-634.
- Moody, D.B., Young, D.C., Cheng, T.Y., Rosat, J.P., Roura-Mir, C., O'Connor, P.B., Zajonc, D.M., Walz, A., Miller, M.J., Levery, S.B., et al. (2004). T cell activation by lipopeptide antigens. Science 303, 527-531. https://doi.org/10.1126/science.1089353
- Nestle, F.O., Conrad, C., Tun-Kyi, A., Homey, B., Gombert, M., Boyman, O., Burg, G., Liu, Y.J., and Gilliet, M. (2005). Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135-143. https://doi.org/10.1084/jem.20050500
- Nicolai, S., Wegrecki, M., Cheng, T.Y., Bourgeois, E.A., Cotton, R.N., Mayfield, J.A., Monnot, G.C., Le Nours, J., Van Rhijn, I., Rossjohn, J., et al. (2020). Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products. Sci. Immunol. 5, eaax5430. https://doi.org/10.1126/sciimmunol.aax5430
- Park, S.H., Weiss, A., Benlagha, K., Kyin, T., Teyton, L., and Bendelac, A. (2001). The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893-904. https://doi.org/10.1084/jem.193.8.893
- Porcelli, S., Brenner, M.B., Greenstein, J.L., Balk, S.P., Terhorst, C., and Bleicher, P.A. (1989). Recognition of cluster of differentiation 1 antigens by human CD4-CD8- cytolytic T lymphocytes. Nature 341, 447-450. https://doi.org/10.1038/341447a0
- Radwan, J., Babik, W., Kaufman, J., Lenz, T.L., and Winternitz, J. (2020). Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 36, 298-311. https://doi.org/10.1016/j.tig.2020.01.008
- Raftery, M.J., Hitzler, M., Winau, F., Giese, T., Plachter, B., Kaufmann, S.H., and Schonrich, G. (2008). Inhibition of CD1 antigen presentation by human cytomegalovirus. J. Virol. 82, 4308-4319. https://doi.org/10.1128/JVI.01447-07
- Rosat, J.P., Grant, E.P., Beckman, E.M., Dascher, C.C., Sieling, P.A., Frederique, D., Modlin, R.L., Porcelli, S.A., Furlong, S.T., and Brenner, M.B. (1999). CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ αβ T cell pool. J. Immunol. 162, 366-371.
- Salimi, M., Barlow, J.L., Saunders, S.P., Xue, L., Gutowska-Owsiak, D., Wang, X., Huang, L.C., Johnson, D., Scanlon, S.T., McKenzie, A.N., et al. (2013). A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210, 2939-2950. https://doi.org/10.1084/jem.20130351
- Sandel, M.H., Dadabayev, A.R., Menon, A.G., Morreau, H., Melief, C.J., Offringa, R., van der Burg, S.H., Janssen-van Rhijn, C.M., Ensink, N.G., Tollenaar, R.A., et al. (2005). Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin. Cancer Res. 11, 2576-2582. https://doi.org/10.1158/1078-0432.CCR-04-1448
- Scharf, L., Li, N.S., Hawk, A.J., Garzon, D., Zhang, T., Fox, L.M., Kazen, A.R., Shah, S., Haddadian, E.J., Gumperz, J.E., et al. (2010). The 2.5 Å structure of CD1c in complex with a mycobacterial lipid reveals an open groove ideally suited for diverse antigen presentation. Immunity 33, 853-862. https://doi.org/10.1016/j.immuni.2010.11.026
- Schnellhardt, S., Erber, R., Buttner-Herold, M., Rosahl, M.C., Ott, O.J., Strnad, V., Beckmann, M.W., King, L., Hartmann, A., Fietkau, R., et al. (2020). Tumour-infiltrating inflammatory cells in early breast cancer: an underrated prognostic and predictive factor? Int. J. Mol. Sci. 21, 8238. https://doi.org/10.3390/ijms21218238
- Seshadri, C., Shenoy, M., Wells, R.D., Hensley-McBain, T., Andersen-Nissen, E., McElrath, M.J., Cheng, T.Y., Moody, D.B., and Hawn, T.R. (2013). Human CD1a deficiency is common and genetically regulated. J. Immunol. 191, 1586-1593. https://doi.org/10.4049/jimmunol.1300575
- Shamshiev, A., Gober, H.J., Donda, A., Mazorra, Z., Mori, L., and De Libero, G. (2002). Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med. 195, 1013-1021. https://doi.org/10.1084/jem.20011963
- Sharma, M., Zhang, X., Zhang, S., Niu, L., Ho, S.M., Chen, A., and Huang, S. (2017). Inhibition of endocytic lipid antigen presentation by common lipophilic environmental pollutants. Sci. Rep. 7, 2085. https://doi.org/10.1038/s41598-017-02229-7
- Sieling, P.A., Torrelles, J.B., Stenger, S., Chung, W., Burdick, A.E., Rea, T.H., Brennan, P.J., Belisle, J.T., Porcelli, S.A., and Modlin, R.L. (2005). The human CD1-restricted T cell repertoire is limited to cross-reactive antigens: implications for host responses against immunologically related pathogens. J. Immunol. 174, 2637-2644. https://doi.org/10.4049/jimmunol.174.5.2637
- Subramaniam, S., Aslam, A., Misbah, S.A., Salio, M., Cerundolo, V., Moody, D.B., and Ogg, G. (2016). Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals. Eur. J. Immunol. 46, 242-252. https://doi.org/10.1002/eji.201545869
- Sugita, M., Cao, X., Watts, G.F., Rogers, R.A., Bonifacino, J.S., and Brenner, M.B. (2002). Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16, 697-706. https://doi.org/10.1016/S1074-7613(02)00311-4
- Sugita, M., Grant, E.P., van Donselaar, E., Hsu, V.W., Rogers, R.A., Peters, P.J., and Brenner, M.B. (1999). Separate pathways for antigen presentation by CD1 molecules. Immunity 11, 743-752. https://doi.org/10.1016/S1074-7613(00)80148-X
- Sugita, M., Porcelli, S.A., and Brenner, M.B. (1997). Assembly and retention of CD1b heavy chains in the endoplasmic reticulum. J. Immunol. 159, 2358-2365.
- Sugita, M., van Der Wel, N., Rogers, R.A., Peters, P.J., and Brenner, M.B. (2000). CD1c molecules broadly survey the endocytic system. Proc. Natl. Acad. Sci. U. S. A. 97, 8445-8450. https://doi.org/10.1073/pnas.150236797
- Suzuki, A., Masuda, A., Nagata, H., Kameoka, S., Kikawada, Y., Yamakawa, M., and Kasajima, T. (2002). Mature dendritic cells make clusters with T cells in the invasive margin of colorectal carcinoma. J. Pathol. 196, 37-43. https://doi.org/10.1002/path.1018
- Tazi, A., Bouchonnet, F., Grandsaigne, M., Boumsell, L., Hance, A.J., and Soler, P. (1993). Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. J. Clin. Invest. 91, 566-576. https://doi.org/10.1172/JCI116236
- Vasquez, A.M., Mouchlis, V.D., and Dennis, E.A. (2018). Review of four major distinct types of human phospholipase A2. Adv. Biol. Regul. 67, 212-218. https://doi.org/10.1016/j.jbior.2017.10.009
- Visvabharathy, L., Genardi, S., Cao, L., He, Y., Alonzo, F., 3rd, Berdyshev, E., and Wang, C.R. (2020). Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathog. 16, e1008443. https://doi.org/10.1371/journal.ppat.1008443
- Vocanson, M., Hennino, A., Rozieres, A., Poyet, G., and Nicolas, J.F. (2009). Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 64, 1699-1714. https://doi.org/10.1111/j.1398-9995.2009.02082.x
- Wollenberg, A., Kraft, S., Hanau, D., and Bieber, T. (1996). Immuno-morphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J. Invest. Dermatol. 106, 446-453. https://doi.org/10.1111/1523-1747.ep12343596
- Yoshida, A., Imayama, S., Sugai, S., Kawano, Y., and Ishibashi, T. (1997). Increased number of IgE positive Langerhans cells in the conjunctiva of patients with atopic dermatitis. Br. J. Ophthalmol. 81, 402-406. https://doi.org/10.1136/bjo.81.5.402
- Zajonc, D.M., Crispin, M.D., Bowden, T.A., Young, D.C., Cheng, T.Y., Hu, J., Costello, C.E., Rudd, P.M., Dwek, R.A., Miller, M.J., et al. (2005). Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22, 209-219. https://doi.org/10.1016/j.immuni.2004.12.009
- Zajonc, D.M., Elsliger, M.A., Teyton, L., and Wilson, I.A. (2003). Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. Nat. Immunol. 4, 808-815. https://doi.org/10.1038/ni948
- Zeng, Z., Castano, A.R., Segelke, B.W., Stura, E.A., Peterson, P.A., and Wilson, I.A. (1997). Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277, 339-345. https://doi.org/10.1126/science.277.5324.339
Cited by
- Chemical Modulators of Mucosal Associated Invariant T Cells vol.54, pp.17, 2021, https://doi.org/10.1021/acs.accounts.1c00359