• Title/Summary/Keyword: innate lymphoid cells

Search Result 18, Processing Time 0.025 seconds

The Roles of Innate Lymphoid Cells in the Development of Asthma

  • Woo, Yeonduk;Jeong, Dongjin;Chung, Doo Hyun;Kim, Hye Young
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.171-181
    • /
    • 2014
  • Asthma is a common pulmonary disease with several different forms. The most studied form of asthma is the allergic form, which is mainly related to the function of Th2 cells and their production of cytokines (IL-4, IL-5, and IL-13) in association with allergen sensitization and adaptive immunity. Recently, there have been many advances in understanding non-allergic asthma, which seems to be related to environmental factors such as air pollution, infection, or even obesity. Cells of the innate immune system, including macrophages, neutrophils, and natural killer T cells as well as the newly described innate lymphoid cells, are effective producers of a variety of cytokines and seem to play important roles in the development of non-allergic asthma. In this review, we focus on recent findings regarding innate lymphoid cells and their roles in asthma.

Innate Lymphoid Cells in Tissue Homeostasis and Disease Pathogenesis

  • Kim, Jihyun;Ryu, Seungwon;Kim, Hye Young
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. ILCs can be categorized into three groups on the basis of the transcription factors that direct their functions and the cytokines they produce. Notably, these functions parallel the effector functions of T lymphocytes. ILCs play a frontline role in host defense and tissue homeostasis by responding rapidly to environmental factors, conducting effector responses in a tissue-specific manner, and interacting with hematopoietic and non-hematopoietic cells throughout the body. Moreover, recent studies reveal that ILCs are involved in development of various inflammatory diseases, such as respiratory diseases, autoimmune diseases, or cancer. In this review, we discuss the recent findings regarding the biology of ILCs in health and inflammatory diseases.

A novel IL-10-producing innate lymphoid cells (ILC10) in a contact hypersensitivity mouse model

  • Kim, Hyuk Soon;Jang, Jong-Hwa;Lee, Min Bum;Jung, In Duk;Park, Yeong-Min;Kim, Young Mi;Choi, Wahn Soo
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.293-296
    • /
    • 2016
  • The immunoregulatory cytokine Interleukin 10 (IL-10) protein is produced by various cells during the course of inflammatory disorders. Mainly, it downregulates pro-inflammatory cytokines, antigen presentation, and helper T cell activation. In this study, we show that the ratio of IL-10-producing cells was significantly increased in lineage negative (i.e., not T, B, or leukocyte cell lineages) cells than in lineage positive cells in lymphoid and peripheral tissues. We further observed that IL-10-producing innate lymphoid cells (ILCs), here called firstly ILC10, were increased in number in oxazolone-induced contact hypersensitivity (CHS) mice. In detail, IL-10-producing lineage negative cells were elevated in the axillary, inguinal lymph node, and ear tissues of CHS mice. Notably, the cells expressed classical ILC marker proteins such as CD45, CD127, and Sca-1. Altogether, our findings suggest for the first time that ILC10s are present in various physiological settings and could be involved in numerous immune responses as regulatory cells.

Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells

  • Shin, Jae Woo;Ryu, Seungwon;Ham, Jongho;Jung, Keehoon;Lee, Sangho;Chung, Doo Hyun;Kang, Hye-Ryun;Kim, Hye Young
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.580-590
    • /
    • 2021
  • Patients with severe asthma have unmet clinical needs for effective and safe therapies. One possibility may be mesenchymal stem cell (MSC) therapy, which can improve asthma in murine models. However, it remains unclear how MSCs exert their beneficial effects in asthma. Here, we examined the effect of human umbilical cord blood-derived MSCs (hUC-MSC) on two mouse models of severe asthma, namely, Alternaria alternata-induced and house dust mite (HDM)/diesel exhaust particle (DEP)-induced asthma. hUC-MSC treatment attenuated lung type 2 (Th2 and type 2 innate lymphoid cell) inflammation in both models. However, these effects were only observed with particular treatment routes and timings. In vitro co-culture showed that hUC-MSC directly downregulated the interleukin (IL)-5 and IL-13 production of differentiated mouse Th2 cells and peripheral blood mononuclear cells from asthma patients. Thus, these results showed that hUC-MSC treatment can ameliorate asthma by suppressing the asthmogenic cytokine production of effector cells. However, the successful clinical application of MSCs in the future is likely to require careful optimization of the route, dosage, and timing.

Innate lymphoid cell markers: expression, localization, and regulation at the maternal-conceptus interface in pigs

  • Yugyeong Cheon;Inkyu Yoo;Soohyung Lee;Hakhyun Ka
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.89-98
    • /
    • 2023
  • Background: The regulation of maternal immunity is critical for the establishment and maintenance of successful pregnancy. Among many cell types regulating the immune system, innate lymphoid cells (ILCs) are known to play an important role in innate immunity. Although some reports show that ILCs are present at the maternalconceptus interface in humans and mice, the expression and function of ILCs in the endometrium have not been studied in pigs. Methods: Thus, we determined the expression, localization, and regulation of ILC markers, CD127 (a common marker for ILCs), BCL11B (a ILC2 marker), and RORC (a ILC3 marker) at the maternal-conceptus interface in pigs. Results: The expression of BCL11B and RORC, but not CD127, in the endometrium changed during pregnancy in a stage-specific manner and the expression of CD127, BCL11B, and RORC was greatest on Day 15 during pregnancy. CD127, BCL11B, and RORC were also expressed in conceptus tissues during early pregnancy and in chorioallantoic tissues during the later stage of pregnancy. BCL11B and RORC proteins were localized to specific cells in endometrial stroma. The expression of CD127 and BCL11B, but not RORC, was increased by the increasing doses of interferon-γ (IFNG) in endometrial explants. Conclusions: These results suggest that ILCs present at the maternal-conceptus interface may play a role in the establishment and maintenance of pregnancy by regulating the innate immunity in pigs.

Heterogeneity of IL-22-producing Lymphoid Tissue Inducer-like Cells in Human and Mouse

  • Kim, Soochan;Han, Sinsuk;Kim, Mi-Yeon
    • IMMUNE NETWORK
    • /
    • v.10 no.4
    • /
    • pp.115-119
    • /
    • 2010
  • Lymphoid tissue inducer (LTi) cells have been characterized in mouse as a key cell when secondary lymphoid tissues are organized during development and memory T cells are formed after birth. In addition to their involvement in adaptive immune responses, recent studies show that they contribute to innate immune responses by producing large amount of interleukin (IL)-22 against microbial attack. Here, we compare IL-22-producing LTi and LTi-like cells in human and mouse and discuss their heterogeneity in different tissues.

Decreased CRTH2 Expression and Response to Allergen Re-stimulation on Innate Lymphoid Cells in Patients With Allergen-Specific Immunotherapy

  • Mitthamsiri, Wat;Pradubpongsa, Panitan;Sangasapaviliya, Atik;Boonpiyathad, Tadech
    • Allergy, Asthma & Immunology Research
    • /
    • v.10 no.6
    • /
    • pp.662-674
    • /
    • 2018
  • Purpose: Group 2 innate lymphoid cells (ILC2s) have been implicated in the pathogenesis of allergic disease. However, the effect of allergen-specific immunotherapy (AIT) on ILCs remains to be clarified. The aim of this study was to evaluate the levels of ILC subsets in allergic rhinitis (AR) patients in response to house dust mite (HDM)-specific immunotherapy. Methods: We enrolled 37 AR patients undergoing AIT (16 responders and 11 non-responders) for 2 years, 35 HDM AR patients and 28 healthy subjects. Peripheral blood mononuclear cells (PBMCs) were analyzed by flow cytometry to identify ILC subsets. Stimulation of ILC2s with recombinant allergen-specific protein was used to determine ILC2's activation (CD69 expression). Results: Responder AIT patients and healthy subjects had a decreased frequency of circulating ILC2s compared to non-responder AIT and AR patients. Conversely, ILC1s from responder AIT patients and healthy subjects showed increased frequency compared to non-responder AIT and AR patients. The frequency of ILC3s natural cytotoxicity receptor $(NCR)^+$ and $NCR^-$ in responder AIT patients was significantly lower compared to AR patients and healthy subjects. The ILC1: ILC2 proportion in responder AIT patients was similar to that of healthy subjects. PBMCs from patients who were responders to AIT had a significantly lower expression of the activation marker CD69 on ILC2s in response to allergen re-stimulation compared to AR patients, but no difference compared to non-responder AIT patients and healthy subjects. Conclusions: We propose that AIT might affect ILC responses. The activation of ILC2s was reduced in AR patients treated with AIT. Our results indicate that a relative ILC1/ILC2 skewed response is a possible key to successful AIT.

Intravenous Mesenchymal Stem Cell Administration Modulates Monocytes/Macrophages and Ameliorates Asthmatic Airway Inflammation in a Murine Asthma Model

  • Mo, Yosep;Kang, Sung-Yoon;Bang, Ji-Young;Kim, Yujin;Jeong, Jiung;Jeong, Eui-Man;Kim, Hye Young;Cho, Sang-Heon;Kang, Hye-Ryun
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.833-845
    • /
    • 2022
  • Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti-asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.

Increased Innate Lymphoid Cell 3 and IL-17 Production in Mouse Lamina Propria Stimulated with Giardia lamblia

  • Lee, Hye-Yeon;Park, Eun-Ah;Lee, Kyung-Jo;Lee, Kyu-Ho;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.3
    • /
    • pp.225-232
    • /
    • 2019
  • Innate lymphoid cells (ILCs) are key players during an immune response at the mucosal surfaces, such as lung, skin, and gastrointestinal tract. Giardia lamblia is an extracellular protozoan pathogen that inhabits the human small intestine. In this study, ILCs prepared from the lamina propria of mouse small intestine were incubated with G. lamblia trophozoites. Transcriptional changes in G. lamblia-exposed ILCs resulted in identification of activation of several immune pathways. Secretion of interleukin (IL)-17A, IL-17F, $IL-1{\beta}$, and interferon-${\gamma}$ was increased, whereas levels of IL-13, IL-5, and IL-22, was maintained or reduced upon exposure to G. lamblia. Goup 3 ILC (ILC3) was found to be dominant amongst the ILCs, and increased significantly upon co-cultivation with G. lamblia trophozoites. Oral inoculation of G. lamblia trophozoites into mice resulted in their presence in the small intestine, of which, the highest number of parasites was detected at the 5 days-post infection. Increased ILC3 was observed amongst the ILC population at the 5 days-post infection. These findings indicate that ILC3 from the lamina propria secretes IL-17 in response to G. lamblia, leading to the intestinal pathology observed in giardiasis.

Modulation of TNFSF expression in lymphoid tissue inducer cells by dendritic cells activated with Toll-like receptor ligands

  • Han, Sin-Suk;Koo, Ji-Hye;Bae, Jin-Gyu;Kim, Soo-Chan;Baik, Song;Kim, Mi-Yeon
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.129-134
    • /
    • 2011
  • Toll-like receptors (TLRs), which recognize structurally conserved components among pathogens, are mainly expressed by antigen-presenting cells such as dendritic cells (DCs), B cells, and macrophages. Recognition through TLRs triggers innate immune responses and influences antigen-specific adaptive immune responses. Although studies on the expression and functions of TLRs in antigen-presenting cells have been extensively reported, studies in lymphoid tissue inducer (LTi) cells have been limited. In this study, we observed that LTi cells expressed TLR2 and TLR4 mRNA as well as TLR2 protein and upregulated OX40L, CD30L, and TRANCE expression after stimulation with the TLR2 ligand zymosan or TLR4 ligand LPS. The expression of tumor necrosis factor superfamily (TNFSF) members was significantly upregulated when cells were cocultured with DCs, suggesting that upregulated TNFSF expression may contribute to antigen-specific adaptive immune responses.