• Title/Summary/Keyword: effective flexural rigidity

Search Result 35, Processing Time 0.028 seconds

Vibration Reduction Effects of Stay Cable Due to Friction Damper (마찰댐퍼에 의한 사장 케이블의 진동저감 효과)

  • Kim, Hyung Ku;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Stay cable has a strong axial rigidity due to large initial tension and, on the other hand, it has a weak laterally flexural rigidity. Wind loads or traffic loads cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables of cable-stayed bridge (CSB). Therefore, the development of vibration reduction design is an urgent task to control the vibration vulnerable long-span bridges. As Friction damper (FD) shows to reduce the amplitude and duration time of vibration of cable of CSB from measured date in field test, friction damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable of CSB under traffic load, wind load and so on. Vibration characteristics of cable can change according to manufacturing method and type of established form. Nevertheless, analysis method in this study can present the design of friction damper for vibration reduction of cable of cable-stayed bridge from now on.

Internal Wood Temperature Manipulation Using Quadratic Residue Diffusor Microwaves (Quadratic Residue Diffusor Microwave를 이용한 목재의 내부 온도변화에 관한 연구)

  • Kim, Ki-Ho;Kim, Kyung-Min
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In contrast to conventional microwaves, QRD (Quadratic Residue Diffusor) microwaves are a new energy-efficient technology that enhances the effect of sterilization based on changing the wavelength phase difference. Therefore, this study investigated the sterilization of wood using environmentally friendly and low energy consuming QRD microwaves. The results are as follows: for the QRD microwaves used in this study, the efficiency E = 5.75e0.32 S ($R^2$=0.908). Although the early water content was not constant, the average water content was 30.3% and after one week of natural drying, the water content was 22.6%, representing an average water content reduction of about 8%. When increasing the microwave level from 3 kW ~ 9 kW, the time taken for the temperature to increase was reduced. After the QRD microwave treatment, the wood samples showed no change in their flexural rigidity, compressive strength, or cleavage. The QRD microwave levels used in the experiments were 3, 5, 7, and 9 kW, where 9 kW was found to be the most efficient. Thus, for the purpose of eliminating nematodes and termites inside wood, a higher QRD microwave level was found to be more effective and energy efficient.

Control Effectiveness of Shear Walls Connected by Beams with Friction Dampers (인방보에 마찰형 감쇠기가 설치된 전단벽의 제진효과)

  • Chung, Hee-San;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.105-115
    • /
    • 2009
  • Numerical analysis of shear walls governed by flexural behavior is conducted for the seismic control performance of proposed friction dampers installed at the center of coupling beams. Control effectiveness of shear walls connected by beams with the proposed dampers are compared for single shear wall with same flexural rigidity. Average responses of the shear walls with the dampers are found with seven scaled-downed earthquakes based on KEC 2005 design spectrum. Slip load is the most important design parameter. It is designed to be 5, 10, 20, 30, 60, 90% of total vertical shear force at damper location to prevent damper slip in specific stories. Nonlinear time-history analysis is conducted by using SeismoStruct analysis program. Seismic control performance of the dampers is evaluated for base shear, energy dissipation, curvature and top-floor displacement. Results show that the dampers are the most effective in reducing the responses when their total slip load is 30% of total vertical shear force.

Short- and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate

  • Ranzi, Gianluca
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.237-255
    • /
    • 2006
  • This paper presents a novel analytical formulation for the analysis of composite beams with partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and shrinkage. The model is derived by means of the principle of virtual work using a displacement-based formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate, therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full shear interaction and partial shear interaction of two layers for which solutions in closed form are available in the literature. A parametric study is carried out considering different stiffening arrangements to investigate the influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5 guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the proposed approach in determining the effectiveness of different retrofitting solutions at service conditions.

Correlation Between Crack Widths and Deflection in Reinforced Concrete Beams (철근콘크리트 보의 균열 폭과 처짐 관계)

  • Kang, Ju-Oh;Kim, Kang-Su;Lee, Deuck-Hang;Lee, Seung-Bea
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.184-192
    • /
    • 2010
  • The member deflection is one of the most important considerations for the serviceability evaluation of reinforced concrete (RC) structures, and the concept of the effective moment of inertia has been generally used for its estimation. However, the actual service load applied on an existing RC beam may not be easily obtained, for which the estimation of beam deflection by existing methods can be difficult to obtain. Therefore, based on the correlation between cracks and deflection in a RC beam, this study proposed a method to estimate the deflection of RC beams directly from the condition of cracks not using the actual loads acting on the member as its input data. The proposed method extensively utilized the relationships among sums of crack widths, average strains, and curvatures, and modification factors obtained from regression analysis were also introduced to improve its accuracy. The deflections of members were successfully estimated by the proposed method independent from applied loads, which was also easy to apply compared to the existing methods based on the effective moment of inertia.

Effects of Condensed Sodium Phosphates as a Degumming Aid Reagent for Raw Silk Fabric (견의 정연조제로서 축합인산염의 효과에 관한 연구)

  • 이용우;송기언;정인모
    • Journal of Sericultural and Entomological Science
    • /
    • v.25 no.2
    • /
    • pp.44-50
    • /
    • 1984
  • The effects of sodium pyrophosphate, sodium tripolyphosposphate and ethylene diamine tetraacetic acid as a degumming aid reagent were investigated under the conditions of underground water and dimineralized water for the scouring water sources. The changes of water qualities by adding the condensed sodium phosphates and the physical properties of scoured silk fabric were examined, respectively. 1. The water hardness of underground water was decreased by adding the condensed sodium phosphates and it was further reduced according to the increasing temperature. The water hardness reducing power of sodium pyrophosphate was a little stronger than that of sodium tripolyphosphate. 2. The sodium silicate as an alkaline reagant for scouring decreased the water hardness, but the sodium carbonate increased it in the underground water. 3. The pH value of 0.4% soap and 0.25% sodium silicate mixed solution after boiling was. 9.80, but it was leveled upto 9.90 by adding 0.05% sodium pyrophosphate and upto 9.95 by 0.02% ehtylene diamine tetraacetic acid, respectively. 4. The masking action of Fe$\^$3+/ ions dissolved in the scouring water was more remarkable by ethylene diamine tetraacetic acid than by the condensed sodium phosphates. Of the condensations, sodium tripolyphosphate was more effective than sodium pyrophosphate in the action. 5. Genrally, the dimineralized water scouring increased the boil-off ratio with reducing the flexural rigidity of fabric which was negatively related with the favorablility of hand-touch more than the underground one did. 6. Under the underground water scouring, the addition of ethylene diamine tetraacetic acid increased the boil-of ratio and compressive elasticity of fabric with reducing the flexural rigidity more than that of the condensed sodium phosphates did. 7 The additions of sodium tripolyphosphate and ethylene diamine tetraacetic acid reduced the flexural rigidity of fabric with raising the boil-off ratio even in the dimineralized water scouring, but there was no sifnificant difference between both of them.

  • PDF

Ultimate Behavior of GFRP Shell Structure Stiffened by Steel Pipe Ring (강관링으로 보강된 GFRP 쉘구조의 극한 거동)

  • Kim, In Gyu;Lim, Seung Hyun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.219-229
    • /
    • 2014
  • The experiment and FE analysis of ultimate behavior of GFRP cylindrical shell structure stiffened by steel pipe ring instead of rectangular cross-section ring was presented. Four kinds of test models were designed and flexural failure experiment was performed to investigate ultimate behavior characteristic according to the size of cross section of steel pipe ring and diameter of GFRP shell. Material properties of specimens were experimented by bending, tensile and compressive test. Displacements and strains were measured to evaluate failure behavior of steel pipe ring and GFRP shell structure. The experimental results were compared with the FEA results by commercial program ABAQUS. It is observed that GFRP shell structure stiffened by steel ring have enough ductility to bending failure, and an increase of bending rigidity of steel ring is very effective to increase of failure strength of GFRP shell structure.

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

Analysis on the Influence of Moment Distribution Shape on the Effective Moment of Inertia of Simply Supported Reinforced Concrete Beams (철근콘크리트 단순보의 유효 단면2차모멘트에 대한 모멘트 분포 형상의 영향 분석)

  • Park, Mi-Young;Kim, Sang-Sik;Lee, Seung-Bae;Kim, Chang-Hyuk;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2009
  • The concept of the effective moment of inertia has been generally used for the deflection estimation of reinforced concrete flexural members. The KCI design code adopted Branson's equation for simple calculation of deflection, in which a representative value of the effective moment of inertia is used for the whole length of a member. However, the code equation for the effective moment of inertia was formulated based on the results of beam tests subjected to uniformly distributed loads, which may not effectively account for those of members under different loading conditions. Therefore, this study aimed to verify the influences of moment shapes resulting from different loading patterns by experiments. Six beams were fabricated and tested in this study, where primary variables were concrete compressive strengths and loading distances from supports, and test results were compared to the code equation and other existing approaches. A method utilizing variational analysis for the deflection estimation has been also proposed, which accounts for the influences of moment shapes to the effective moment of inertia. The test results indicated that the effective moment of inertia was somewhat influenced by the moment shape, and that this influence of moment shape to the effective moment of inertia was not captured by the code equation. Compared to the code equation, the proposed method had smaller variation in the ratios of the test results to the estimated values of beam deflections. Therefore, the proposed method is considered to be a good approach to take into account the influence of moment shape for the estimation of beam deflection, however, the differences between test results and estimated deflections show that more researches are still required to improve its accuracy by modifying the shape function of deflection.

Experimental Evaluation on Effective Moment of Inertia of Reinforced Concrete Simple Beams and Continuos Beams Considering Tension Stiffening Effect (인장증강효과를 고려한 철근콘크리트 단순보와 연속보의 유효 단면2차모멘트에 대한 실험적 검증)

  • Lee, Seung-Bae;Yoon, Hyeong-Jae;Kim, Kang-Su;Kim, Sang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.285-288
    • /
    • 2008
  • A model for the effective moment of inertia $I_{\epsilon}$ as expressed in Branson's equation, in which reduction of the flexural rigidity of RC beams due to cracking are aptly taken into accoun,t is presented. However, KCI Code isn`t considered tension stiffening as it is in debonding of reinforcing bar. Therefore, this equation need to set up suitable to our design Code. The experimental work consisted of casting and testing a total of 6 simply supported reinforced concrete beams and a total of 4 continuos reinforced concrete beams under two point concentrated loads. Main parameters are concrete strength, coverage, bond between concrete and reinforcing bars, are known as have an effect on deflection and tension stiffening. Every test beams had the same $250{\times}350$mm rectangular section, with a simply supported clear span of 4,400 mm and a continuos clear span of 6,500 mm. Comparison of the test results with values obtained using the KCI Code equation of the effective moment of inertia showed a noticeable difference.

  • PDF