• Title/Summary/Keyword: effective damage model

Search Result 413, Processing Time 0.032 seconds

Evaluation of Antioxidative Activity of Agrimonia pilosa-Ledeb Leaves on Non-lipid Oxidative Damage

  • Hah, Dae-Sik;Kim, Chung-Hui;Kim, Eui-Kyung;Kim, Jong-Shu
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.243-251
    • /
    • 2009
  • Present study was conducted to evaluate the anti oxidative activity of the Agrimonia pilosa-Ledeb leaves on non-lipid oxidative damage. The antioxidative activity of methanolic (MeOH) extract of the Agrimonia pilosa-Ledeb leaves on non-lipid oxidation, including liposome oxidation, deoxyribose oxidation, protein oxidation, chelating activity against metal ions, scavenging activity against hydrogen peroxide, scavenging activity against hydroxyl radical and 2'-deoxyguanosine (2'-dG) oxidation were investigated. The MeOH extract of the Agrimonia pilosa-Ledeb leaves exhibited high anti oxidative activity in the liposome model system. Deoxyribose peroxidation was inhibited by the MeOH extract of the Agrimonia pilosa-Ledeb leaves and MeOH extract of the Agrimonia pilosa-Ledeb leaves provided remarkable protection against damage to deoxyribose. Protective effect of MeOH extracts of the Agrimonia pilosa-Ledeb leaves on protein damage was observed at $600{\mu}g$ level (82.05%). The MeOH extracts of the Agrimonia pilosa-Ledeb leaves at $300{\mu}g$ revealed metal binding ability (32.64%) for hydrogen peroxide. Furthermore, the oxidation of 2'-deoxyguanosine (2'-dG) to 8-hydroxy-2-deoxyguanosine (8-OH-2'dG) was inhibited by MeOH extracts of the Agrimonia pilosa-Ledeb leaves and scavenging activity for hydroxyl radical exhibited a remarkable effect. From the results in the present study on biological model systems, we concluded that MeOH extract of the Agrimonia pilosa-Ledeb leaves was effective in the protection of non-lipids against various oxidative model systems.

A Study on the Demage forecast of Biological Terrorism ­Focused on Smallpox­ (시뮬레이션을 이용한 생물테러 발생에 따른 피해예측에 관한 연구 ­천연두를 중심으로­)

  • 김영훈;박정화;김태현;문성암
    • Journal of the military operations research society of Korea
    • /
    • v.29 no.2
    • /
    • pp.26-44
    • /
    • 2003
  • This study Is to forecast the damage of smallpox as a biological weapon and to measure the effect of potential responses (quarantine, vaccination and cure) to the spread of smallpox infection when a smallpox bioterrorism attack occurs. We designed the smallpox spreading simulation model through the literature study on a basis of some existing infectious disease models such as SIR, SEIR model by using Vensim program. In order to evaluate the performance of responses to smallpox, we measure the total infection population, infection sustaining duration, average infection rate and the infection spreading behavior of the smallpox. This study can help those who are related to the bioterrorism forecast the present and possible demage, and take more effective actions for minimizing the damage by smallpox bioterrorism.

Cost Effectiveness of Bse-Isolation for Bridges in Low and Moderate Seismic Region (중저진 지역에서의 지진격리교량의 경제적 효율성에 관한 연구)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.178-185
    • /
    • 1999
  • Minimum life-cycle cost helps to evaluate cost effectiveness of base-isolated bridges under specific condition. Life-cycle cost mainly consists of the initial construction cost and the expected damage cost. Damage cost estimation needs proper model of input ground motion failure probability evaluation method and limit states definition. We model the input ground motion as spectral density function compatible with the response spectra defined at each seismicity and site condition. Spectrum analysis and crossing theory is suitable for reseating calculation of failure probabilities in the process of cost minimization. Limit states of base-isolated bridges re defined for superstructure isolator and pier respectively The method is applied to both base-isolated bridges and conventional bridges under the same conditions to investigate cost effectiveness of base isolation in low and moderate seismic region. the results show that base-isolation of bridges are more effective in low and moderate seismic region and that the site effects on the economical efficiency may not be negligible in such a region.

  • PDF

A Study on the Hysteretic Characteristics of Self-Centering Disc Spring Brace (셀프 센터링이 가능한 디스크 스프링 브레이스의 이력특성에 관한 연구)

  • Park, Byung-Tae;Shin, Dong-Hyeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.89-96
    • /
    • 2023
  • The seismic retrofits of existing structures have been focused on the control of structural responses which can be achieved by providing displacement capacity through inelastic ductile action at supplemental devices. Due to their hysteretic characteristics, it is expected to sustain damage through repeated inelastic behaviors including residual deformation which might increase repair costs. To solve such drawbacks of existing yielding devices, this study proposes a self-centering disc spring brace that sustains large axial deformation without structural damage while providing stable energy dissipation capacity. The hysteretic behaviors of suggested brace are first investigated based on the quasi-static cyclic test procedure. Experimental results present the effective self-centering behavior and an analytical model is then suggested in order to reasonably capture the flag-shaped hysteretic behavior of the disc spring brace.

Modeling of cyclic bond deterioration in RC beam-column connections

  • Picon-Rodriguez, Ricardo;Quintero-Febres, Carlos;Florez-Lopez, Julio
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.569-589
    • /
    • 2007
  • This paper presents an analytical model for RC beam-column connections that takes into account bond deterioration between reinforcing steel and concrete. The model is based on the Lumped Damage Mechanics (LDM) theory which allows for the characterization of cracking, degradation and yielding, and is extended in this paper by the inclusion of the slip effect as observed in those connections. Slip is assumed to be lumped at inelastic hinges. Thus, the concept of "slip hinge", based on the Coulomb friction plasticity theory, is formulated. The influence of cracking on the slip behavior is taken into account by using two concepts of LDM: the effective moment on an inelastic hinge and the strain equivalence hypothesis. The model is particularly suitable for wide beam-column connections for which bond deterioration dominates the hysteretic response. The model was evaluated by the numerical simulation of five tests reported in the literature. It is found that the model reproduces closely the observed behavior.

A Numerical Study on the Thermo-mechanical Response of a Composite Beam Exposed to Fire

  • Pak, Hongrak;Kang, Moon Soo;Kang, Jun Won;Kee, Seong-Hoon;Choi, Byong-Jeong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1177-1190
    • /
    • 2018
  • This study presents an analytical framework for estimating the thermo-mechanical behavior of a composite beam exposed to fire. The framework involves: a fire simulation from which the evolution of temperature on the structure surface is obtained; data transfer by an interface model, whereby the surface temperature is assigned to the finite element model of the structure for thermo-mechanical analysis; and nonlinear thermo-mechanical analysis for predicting the structural response under high temperatures. We use a plastic-damage model for calculating the response of concrete slabs, and propose a method to determine the stiffness degradation parameter of the plastic-damage model by a nonlinear regression of concrete cylinder test data. To validate simulation results, structural fire experiments have been performed on a real-scale steel-concrete composite beam using the fire load prescribed by ASTM E119 standard fire curve. The calculated evolution of deflection at the center of the beam shows good agreement with experimental results. The local test results as well as the effective plastic strain distribution and section rotation of the composite beam at elevated temperatures are also investigated.

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.

Development of Coil Breakage Prediction Model In Cold Rolling Mill

  • Park, Yeong-Bok;Hwang, Hwa-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1343-1346
    • /
    • 2005
  • In the cold rolling mill, coil breakage that generated in rolling process makes the various types of troubles such as the degradation of productivity and the damage of equipment. Recent researches were done by the mechanical analysis such as the analysis of roll chattering or strip inclining and the prevention of breakage that detects the crack of coil. But they could cover some kind of breakages. The prediction of Coil breakage was very complicated and occurred rarely. We propose to build effective prediction modes for coil breakage in rolling process, based on data mining model. We proposed three prediction models for coil breakage: (1) decision tree based model, (2) regression based model and (3) neural network based model. To reduce model parameters, we selected important variables related to the occurrence of coil breakage from the attributes of coil setup by using the methods such as decision tree, variable selection and the choice of domain experts. We developed these prediction models and chose the best model among them using SEMMA process that proposed in SAS E-miner environment. We estimated model accuracy by scoring the prediction model with the posterior probability. We also have developed a software tool to analyze the data and generate the proposed prediction models either automatically and in a user-driven manner. It also has an effective visualization feature that is based on PCA (Principle Component Analysis).

  • PDF

Damage Detection of Truss Structures Using Parametric Projection Filter Theory (파라메트릭 사양필터를 이용한 트러스 구조물의 손상 검출)

  • Mun, Hyo-Jun;Suh, Ill-Gyo
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.29-36
    • /
    • 2004
  • In this paper, a study of damage detection for 2-Dimensional Truss Structures using the parametric projection filter theory is presented. Many researchers are interested in inverse problem and one of solution procedures for inverse problems that are very effective is the approach using the filtering algorithm in conjunction with numerical solution methods. In filtering algorithm, the Kalman filtering algorithm is well known and have been applied to many kind of inverse problems. In this paper, the Parametric projection filtering in conjunction with structural analysis is applied to the identification of damages in 2-D truss structures. The natural frequency and modes of damaged truss model are adopted as the measurement data. The effectiveness of proposed method is verified through the numerical examples.

  • PDF

Evaluation of Mazars damage model of KURT granite under simulated coupled environment of geological disposal (처분 복합환경을 고려한 KURT 화강암의 Mazars 손상모델 평가)

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.419-434
    • /
    • 2020
  • In this study, the damage parameters of Mazars model for KURT (KAERI Underground Research Tunnel) granite are measured form uniaxial compressive and Brazilian tests under the simulated coupled condition of a deep geological disposal. The tests are conducted in three different temperatures (15℃, 45℃, and 75℃) and dry/saturated conditions. Major model parameters such as maximum effective tensile strain (𝜖d0), At, Bt, Ac, and Bc differ from the typical reference values of concrete specimens. This is likely due to the difference in elastic modulus between rock and concrete. It is found that the saturation of specimens causes an increase in value of Bt and Bc while, the rise in temperature increases 𝜖d0 and Bt and decreases Bc. The damage model obtained from this study will be used as the primary input parameters in the development of coupled Thermo-Hydro-Mechanical Damage numerical model in KAERI.