• 제목/요약/키워드: effect of operating conditions

검색결과 811건 처리시간 0.024초

송전선로의 설비특성을 고려한 운영그룹 분류 및 최고허용온도 (An Operation Grouping and Its Maximum Allowable Conductor Temperature Considering Facility-conditions of Transmission Lines)

  • 손홍관;김병걸;박인표;안상현;장태인;최종기
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1922-1928
    • /
    • 2008
  • The thermal rating of a conductor are maximum continuous current capacity and short time emergency current capacity. The overload operation for a faults have an effect on a conductor lifetime. Its time duration and overload level are limited to facility conditions of transmission lines. The short time emergency current capacity in KOREA observe the KEPCO's DESIGN RULE 1210, but its rules are not included to concept of an allowable short time duration. This papers are described to the calculation concept of short time emergency current capacity considering a time duration and an overload level. And we suggested a operation grouping and its maximum conductor temperature considering facility conditions - conductor lifetime, stability of connection points, conductor height above ground and clearance, in the operating and new T/L.

Performance Analysis of a Triple Pressure HRSG

  • Shin, Jee-Young;Son, Young-Seok;Kim, Moo-Geun;Kim, Jae-Soo-;Jeon, Yong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1746-1755
    • /
    • 2003
  • Operating characteristics of a triple pressure reheat HRSG are analyzed using a commercial software package (Gate Cycle by GE Enter Software). The calculation routine determines all the design parameters including configuration and area of each heat exchanger. The off-design calculation part has the capability of simulating the effect of any operating parameters such as power load, process requirements, and operating mode, etc., on the transient performance of the plant. The arrangement of high-temperature and intermediate-temperature components of the HRSG is changed, and its effect on the steam turbine performance and HRSG characteristics is examined. It is shown that there could be a significant difference in HRSG sizes even though thermal performance is not in great deviation. From the viewpoint of both economics and steam turbine performance, it should be carefully reviewed whether the optimum design point could exist. Off-design performance could be one of the main factors in arranging components of the HRSG because power plants operate at various off-design conditions such as ambient temperature and gas turbine load, etc. It is shown that different heat exchanger configurations lead to different performances with ambient temperature, even though they have almost the same performances at design points.

수소-천연가스엔진에서 밸브오버랩 감소가 배기특성에 미치는 영향 (Effect of Reduced Valve Overlap on Emission Characteristics of Hydrogen-Compressed Natural Gas Engine)

  • 이성원;임기훈;박철웅;최영;김창기
    • 대한기계학회논문집B
    • /
    • 제39권1호
    • /
    • pp.21-27
    • /
    • 2015
  • 현행 배기가스규제인 유로6을 대응하기 위해선 질소산화물과 메탄의 배출량을 크게 저감시켜야 하는 실정이다. 본 연구에서는 부분부하운전조건에서 밸브오버랩 감소가 수소-천연가스엔진의 연소 및 배기특성에 미치는 영향을 살펴보았다. 각 연료와 기존캠 및 밸브오버랩이 감소된 변경캠에 대하여 연소 및 배기특성을 분석하였다. 실험결과 변경캠을 사용하였을 때 열효율이 감소하고 연료유량이 증가하였다. 열효율 감소로 인하여 메탄과 이산화탄소의 배출량은 증가하였다. 희박한 운전조건에서 질소산화물 배출량은 기존캠 대비 감소하였다. 동일한 연료 및 운전조건에서는 효율과 배기특성에 악영향을 미치는 것을 알 수 있었다.

10kW급 건물용 고체산화물연료전지(SOFC) 시스템 모델을 이용한 운전조건 최적화 연구 (Optimization of Operating Conditions for a 10 kW SOFC System)

  • 이율호;양찬욱;양충모;박상현;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.49-62
    • /
    • 2016
  • In this study, a solid oxide fuel cell (SOFC) system model including balance of plant (BOP) for building electric power generation is developed to study the effect of operating conditions on the system efficiency and power output. SOFC system modeled in this study consists of three heat-exchangers, an external reformer, burner, and two blowers. A detailed computational cell model including internal reforming reaction is developed for a planer SOFC stack which is operated at intermediate temperature (IT). The BOP models including an external reformer, heat-exchangers, a burner, blowers, pipes are developed to predict the gas temperature, pressure drops and flow rate at every component in the system. The SOFC stack model and BOP models are integrate to estimate the effect of operating parameters on the performance of the system. In this study, the design of experiment (DOE) is used to compare the effects of fuel flow rate, air flow rate, air temperature, current density, and recycle ratio of anode off gas on the system efficiency and power output.

정수장 운영에 영향을 미치는 기후변화 요인 분석 (Effect of Climate Change Characteristics on Operation of Water Purification Plant)

  • 장유정;최현우;이서준;최재영;최현수;오희경
    • 한국물환경학회지
    • /
    • 제40권2호
    • /
    • pp.89-100
    • /
    • 2024
  • Climate change has a broad impact on the entire water environment, and this impact is growing. Climate adaptation in water supply systems often involves quantity and quality control, but there has been a lack of research examining the impacts of climatic factors on water supply productivity and operation conditions. Therefore, the present study focused on, first, building a database of climatic factors and water purification operating conditions, and then identifying the correlations between factors to reveal their impacts. News big data was analyzed with keywords of climatic factors and water supply systems in either nationwide or region-wide analyses. Metropolitan area exhibited more issues with cold waves whereas there were more issues with drought in the Southern Chungcheong area. A survey was conducted to seek experts' opinions on the climatic impacts leading to these effects. Pre-chlorination due to drought, high-turbidity of intake water due to rainfall, an increase of toxins in intake water due to heat waves, and low water temperature due to cold waves were expected. Pearson correlation analysis was conducted based on meteorological data and the operating data of a water purification plant. Heavy rain resulted in 13 days of high turbidity, and the subsequent low turbidity conditions required 3 days of high coagulant dosage. This insight is expected to help inform the design of operation manuals for waterworks in response to climate change.

Lifetime Prediction and Aging Behaviors of Nitrile Butadiene Rubber under Operating Environment of Transformer

  • Qian, Yi-hua;Xiao, Hong-zhao;Nie, Ming-hao;Zhao, Yao-hong;Luo, Yun-bai;Gong, Shu-ling
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.918-927
    • /
    • 2018
  • Based on the actual operating environment of transformer, the aging tests of nitrile butadiene rubber (NBR) were conducted systematically under four conditions: in air, in transform oil, under compression in air and under compression in transform oil to studythe effect of high temperature, transform oil and compression stress simultaneously on the thermal aging behaviors of nitrile butadiene rubber and predict the lifetime. The effects of liquid media and compression stress simultaneously on the thermal aging behaviors of nitrile butadiene rubber were studied by using characterization methods such as IR spectrosc-opy, thermogravimetric measurements, Differential Scanning Calorimetry (DSC) measurements and mechanical property measurements. The changes in physical properties during the aging process were analyzed and compared. Different aging conditions yielded materials with different properties. Aging at $70^{\circ}C$ under compression stress in oil, the change in elongation at break was lower than that aging in oil, but larger than that aging under compression in air. The compression set or elongation at break as evaluation indexes, 50% as critical value, the lifetime of NBR at $25^{\circ}C$ was predicted and compared. When aging under compression in oil, the prediction lifetime was lower than in air and under compression in air, and in oil. It was clear that when predicting the service lifetime of NBR in oil sealing application, compression and media liquid should be involved simultaneously. Under compression in oil, compression set as the evaluation index, the prediction lifetime of NBR was shorter than that of elongation at break as the evaluation index. For the life prediction of NBR, we should take into account of the performance trends of NBR under actual operating conditions to select the appropriate evaluation index.

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

질량유량 증폭기 형상변화에 따른 유동 특성 연구 (Flow Characteristics of Mass Flow Amplifier with Various Geometrical Configurations)

  • 이정민;강현수;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.36-42
    • /
    • 2016
  • Mass flow amplifier, which is an aerodynamic device, makes air flow increased by ejecting small amount of compressed air with $Coand{\breve{a}}$ effect. In this study, the flow characteristics of a mass flow amplifier were studied with various flow conditions and geometrical configurations. In order to improve the performance of mass flow amplifier, various values of clearance, diffuser angle and the aspect ratio of induced flow inlet to outlet were considered as design parameter. Furthermore, four different pressure conditions of compressed air were also considered. Numerical study was performed using the commercial CFD code, ANSYS CFX 14.5 with shear stress transport(SST) turbulent model. The results of pressure and velocity distributions were graphically depicted with different geometrical configurations and operating conditions.

나프타분해플랜트의 부탄추출공정에서 부탄증기의 연속누출에 의한 증기운 폭발사고의 영향평가 (The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Butane Vapor in the Debutanizing Process of Naphtha Cracking Plant)

  • 손민일;이헌창;장서일;김태옥
    • 대한안전경영과학회지
    • /
    • 제2권4호
    • /
    • pp.33-43
    • /
    • 2000
  • The consequence analysis for the unconfined vapor cloud explosion(UVCE) accident by the continuous release of butane vapor was performed and effects of process parameters on consequences were analyzed in standard conditions. For the case of continuous release(87.8 kg/s) of butane vapor at 8 m elevated height in the debutanizing process of tile naphtha cracking plant operating at 877 kPa & 346.75 K, we found that combustion ranges of dispersed vapor estimated by HMP model were 11.2~120.2 m and overpressures estimated by TNT equivalency model at 200 m were about 37.35~55.1 kPa. Also, overpressures estimated by Model UVCE I based on advective travel time to $X_{LFL}$ were smaller than those estimated by Model UVCE IIbased on real travel time between $X_{UFL}$ and $X_{LFL}$. At the same time, damage intensities at 200 m and effect ranges by overpressure could be predicted. Furthermore, simulation results showed that effects of operating pressures on consequences were larger than those of operating temperatures and results of accidents were increased with increasing operating pressures. At this time, sensitivities of overpressures for UVCE accident by the continuous release were about 5 kPa/atm.

  • PDF

EFFECT OF MISALIGNMENT ON THE STATIC CHARACTERISTICS OF 3-LOBE proceeding BEARING

  • Strzelecki, S.;Radulski, W.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.95-96
    • /
    • 2002
  • The operation of proceeding bearing in the conditions of misaligned axis of proceeding and bush leads to the load concentration on the bearing edges causing further mixed lubrication conditions, unstable operation and intensive wear of mating parts. For the design process of proceeding bearing the knowledge of static characteristics determined from the oil film pressure and temperature distribution is very important. For the 3-lobe proceeding bearing, the pressure, temperature and viscosity fields, load capacity, minimum oil film thickness, power loss, oil flow and maximum oil film temperature have been determined by iterative solution of the Reynolds', energy and viscosity equations. The paper introduces the results of theoretical investigations of static characteristics of 3-lobe proceeding bearing operating at misaligned axis of proceeding and bush. An effect of misalignment ratio, length to diameter ratio of the proceeding bearing, the lobe clearance ratio on the static characteristics was investigated. Laminar, adiabatic model of oil film for the solution of Reynolds, energy and viscosity equations was applied.

  • PDF