• 제목/요약/키워드: effect of operating conditions

검색결과 811건 처리시간 0.025초

예혼합기의 열적성층화가 PRF연료의 예혼합압축자기착화에 미치는 영향 (Research about Thermal Stratification Effect on HCCI Combustion Fueled with Primary Reference Fuel)

  • 임옥택
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.157-163
    • /
    • 2008
  • The HCCI combustion mode poses its own set of narrow engine operating by knocking. In order to solve this, inhomogeneity method of mixture and temperature is suggested. The purpose of this research is to get fundamental knowledge about the effect of thermal stratification on HCCI combustion of PRF -Air mixture. The temperature stratification is made by buoyancy effect in combustion chamber of RCM. The analysis items are pressure, temperature of in-cylinder gas and combustion duration. In addition, the structure of flames using the two dimensional chemiluminescence's images by a framing camera are analyzed. Under stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous. Further, the LTR period of homogeneous conditions became shorter than that of the stratified conditions. With the case of homogeneous condition, the luminosity duration becomes shorter than the case of stratified condition. Additionally, under stratified condition, the brightest luminosity intensity is delayed longer than at homogeneous condition.

액-가스 열교환기를 이용한 R170(에탄)용 냉동시스템의 성능 특성 (Performance Characteristics of Refrigerant R170(Ethane) Refrigeration System Using Liquid-gas Heat Exchanger)

  • 구학근
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.78-85
    • /
    • 2016
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system using R170. These liquid-gas heat exchangers(internal or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. Exception for the effect of inner diameter, the RCI of R170 with respect to refrigerant mass flowrate, the length and effectiveness of internal heat exchanger is about 2.1~3.3% higher than that of R13 at the same experimental conditions. With a thorough grasp of these effect, it is necessary to design the R170 compression refrigeration cycle using internal heat exchanger.

가압유동층 반응기에서 카본블랙 촉매를 이용한 메탄의 촉매분해에 의한 수소제조 (Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed on pressurized bench-scale condition)

  • 서형재;이승철;이강인;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.791-793
    • /
    • 2009
  • Hydrogen has been recognized of the energy source for the future, in terms of the most environmentally acceptable energy source. A pressurized fluidized bed reactor made of carbon steel with 0.076 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce amount of $CO_2$ - free hydrogen with validity from a commercial point of view. The fluidized bed was proposed for withdrawing of product carbons from the reactor continuously. The methane decomposition rate with the carbon black N330 catalyst was rapidly reached a quasi-steady state and remained for several hour. The methane thermocatalytic decomposition reaction was carried out at the temperature range of 850 - 950 $^{\circ}C$, methane gas velocity of 2.0 $U_{mf}$ and the operating pressure of 1.0 -3.0 bar. Effect of operating parameters such as reaction temperature, pressure on the reaction rates was investigated and predicted the effect of a change in conditions on a chemical equilibrium thermodynamically, according to Le Chatelier's principle.

  • PDF

승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향 (The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine)

  • 노현구;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

Effect of Spacer Grids on CHF at PWR Operating Conditions

  • Ahn, Seung-Hoon;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • 제33권3호
    • /
    • pp.283-297
    • /
    • 2001
  • The CHF in PWR rod bundles is usually predicted by the local flow correlation approach based on subchannel analysis while difficulty exists due to the existence of spacer grids especially with mixing vanes. In order to evaluate the effect of spacer grids on CHF, the experimental rod bundle data with various types of spacer grids were analyzed using the subchannel code, COBRA-IV-i. For the Plain grid data, a CHF correlation was described as a function of local flow conditions and heated length, and then the residuals of the CHF in mixing vaned grids predicted by the correlation were examined in various kinds of grids. In order to compensate for the residual, three parameters, distances between grids and from the last grids to the CHF site, and equivalent hydraulic diameter were introduced into a grid parameter function representing the remaining effect of spacer grids predicted most of the CHF data points in plaing grids within $\pm$20 percent error band. Good agreement with the CHF data was also shown when the grid parameter function for mixing vaned grids of a specific design was used to compensate for the residuals of the CHF data predicted by the correlation.

  • PDF

Statistical analysis of effects of test conditions on compressive strength of cement solidified radioactive waste

  • Hyeongjin Byeon;Jaeyeong Park
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.876-883
    • /
    • 2023
  • Radioactive waste should be solidified before being disposed of in the repository to eliminate liquidity or dispersibility. Cement is a widely used solidifying media for radioactive waste, and cement solidified waste should satisfy the minimum compressive strength of the waste acceptance criteria of a radioactive repository. Although the compressive strength of waste should be measured by the test method provided by the waste acceptance criteria, the method differs depending on the operating repository of different countries. Considering the measured compressive strength changes depending on test conditions, the effect of test conditions should be analyzed to avoid overestimation or underestimation of the compressive strength during disposal. We selected test conditions such as the height-to-diameter ratio, loading rate, and porosity as the main factors affecting the compressive strength of cement solidified radioactive waste. Owing to the large variance in measured compressive strength, the effects of the test conditions were analyzed via statistical analyses using parametric and nonparametric methods. The results showed that the test condition of the lower loading rate, with a height-to-diameter ratio of two, reflected the actual cement content well, while the porosity showed no correlation. The compressive strength assessment method that reflects the large variance of strengths was suggested.

평판에 충돌하는 초음속 Twin 제트에 관한 연구 (A Study of Supersonic Twin Jet Impinging on a Plate)

  • 박순용;윤상호;백승철;권순범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.508-513
    • /
    • 2003
  • Experiments are performed to investigate the detailed structure of underexpanded twin jet impinging on a perpendicular flat plate. The major parameters, such as nozzle operating pressure and nozzle spacing, are varied to create different jet flow fields resulted from the complicated interactions of the twin jets. From the surface pressure measurements and shadowgraphs taken by schlieren optical system, the jet structure is strongly dependent on the nozzle operation pressure and the spacing. The results obtained show that the closer nozzle spacing may induce to decrease the diameter of the Mach disk within the first shock cell in the underexpanded twin jet. With the increasing nozzle operating pressure and decreasing the nozzle spacing, a new shock wave appears at the entrainment region between the two jets, due to the enhancement of mixing effect of the both jets. The closer nozzle spacing makes the overall impinging pressure level higher, while severe pressure oscillation along the axis of symmetry. Furthermore it is recommended the wider spacing to obtain higher thrust under the present experimental conditions.

  • PDF

The Button effect of CANFLEX Bundle on the Critical Heat Flux and Critical Channel Power

  • Park, Joohwan;Jisu Jun;Hochun Suk;G.R. Dimmick;D.E. Bullock;W. Inch
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.528-533
    • /
    • 1997
  • A CANFLEX(CANdu FLEXible fuelling) 43-element bundle has developed for a CANDU-6 reactor as an alternative of 37-element fuel bundle. The design has two diameter elements (11.5 and 13.5㎜) to reduce maximum element power rating and buttons to enhance the critical heat flux(CHF), compared with the standard 37-element bundle. The freon CHF experiments have performed for two series of CANFLEX bundles with and without buttons with a modelling fluid as refrigerant H-l34a and axial uniform heat flux condition. Evaluating the effects of buttons of CANFLEX bundle on CHF and Critical Channel Power(CCP) with the experimental results, it is shown that the buttons enhance CCP as well as CHF. All the CHF's for both the CANFLEX bundles are occurred at the end of fuel channel with the high dryout quality conditions. The CHF enhancement ratio are increased with increase of dryout quality for all flow conditions and also with increase of mass flux only lot high pressure conditions. It indicates that the button is a useful design lot CANDU operating condition because most CHF flow conditions for CANDU fuel bundle are ranged to high dryout quality conditions.

  • PDF

Performance Prediction of a Combined Heat and Power Plant Considering the Effect of Various Gas Fuels

  • 주용진;김미영;박세익;서동균
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제3권2호
    • /
    • pp.133-140
    • /
    • 2017
  • The performance prediction software developed in this paper is a process analysis tool that enables one to foretell the behavior of processes when certain conditions of operation are altered. The immediate objective of this research is to predict the process characteristics of combined heat and power plant under varying operating conditions. A cogeneration virtual power plant that mimics the mechanical performance of the actual plant was constructed and the performance of the power plant was predicted in the following varying atmospheric conditions: temperature, pressure and humidity. This resulted in a positive outcome where the performance of the power plant under changing conditions were correctly predicted as well as the calorific value of low calorific gas fuel such as shale gas and PNG. The performance prediction tool can detect the operation characteristics of the power plant through the performance index analysis and thus propose the operation method taking into consideration the changes in environmental conditions.

내구시험을 통한 베어링의 열화 특성과 그리스의 화학적 열화 특성 연관성 분석 (Correlation Analysis Between Chemical Degradation Characteristics of Grease and Degradation Characteristics of Bearing Through Durability Test)

  • 강보식;이충성;류경하
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1239-1246
    • /
    • 2022
  • This paper introduces the effect of grease on the degradation characteristics of bearings used as key components of packaging equipment and automation systems. Bearings parts are installed to fix and support the rotating body of the system, and performance degradation of the bearings has a great effect on the life of the system too. When bearings are used in various devices and systems, the grease is applied to reduce friction and improve fatigue life. Determining the type of lubricant (grease) is important because it has a great influence on the operating environment and lifespan and ensures long lifespan of systems and facilities. However, studies that simultaneously compared and analyzed the change in mechanical degradation characteristics and the comparison of chemical degradation characteristics according to grease types under actual operating conditions are insufficient. In this paper, three types of small harmonic drive, high-load reducer, and low-load reducer grease used in power transmission joint modules are experimentally selected and finally injected into ball bearings with a load (19,500N) to improve bearing durability. Degradation characteristics were tested by attaching to test equipment. At this time, after the durability test under the same load conditions, the mechanical degradation characteristics, that is temperature, vibration according to the three greases types. In addition, the chemical degradation characteristics of the corresponding grease was compared to present the results of mutual correlation analysis.