• Title/Summary/Keyword: educational mathematics

Search Result 1,905, Processing Time 0.025 seconds

The Relationship between Family System and Career Attitude Maturity of Mathematically Gifted and Non-Gifted Elementary Students (초등수학영재와 일반학생의 가족체계와 진로태도성숙에 대한 관계 분석)

  • Jang, Kyung Ja;Choi, Jae Ho
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.3
    • /
    • pp.523-539
    • /
    • 2013
  • The object of this study is to compare and analyze mathematically gifted and non-gifted elementary students in the family system and career attitude maturity, understand the characteristics of the former, and provide assistance for career education for both groups. The subjects include 145 mathematically gifted elementary students (73 fifth graders, 72 sixth graders) and 167 non-gifted students (78 fifth graders, 89 sixth graders) in G educational agencies. Materials for the experiment include amended family system test and career attitude maturity test. While t-test was conducted to solve the first research question, Pearson's correlation analysis was performed to solve the other one. The research findings were as follows: First, mathematically gifted elementary students, compared to non-gifted students, turned out to have higher rates of the family system and career attitude maturity rate and showed statistically meaningful positive relationship. Second, the lower components of the family system and career attitude maturity, there seems to be no relationship between family-flexibility and finality. However, among other components, there was a level of significance at 5% which shows statistically meaningful positive relationship. In summary, this found that the family system is able to have an effect on the career attitude maturity for both mathematically gifted elementary students and non-gifted students. Hence, it need to be considered the components of family system when the teacher guides mathematically gifted elementary students and non-gifted students associated with their career.

  • PDF

Characteristics of Students' Problem Solving Using Additive Strategy in Ratio and Proportion Tasks (비와 비례 과제에서 가법적 전략을 사용하는 학생의 문제해결특징 : 중학생 2명의 사례 연구)

  • Park, Jung-Sook
    • School Mathematics
    • /
    • v.10 no.4
    • /
    • pp.603-623
    • /
    • 2008
  • The purpose of this research was to gain a better understanding of the characteristics of students' mathematical representations using additive strategy in ratio and proportion tasks. The additive strategy is the erroneous one used most often among the strategies reported in solving ratio and proportion tasks. It is a problem solving strategy that preserves the difference from one ratio to another. Students' additive strategies were categorized into four parts: subtracting without considering units of quantities, comparing the numbers that represent the whole subtracted from the part and same part, adding the difference, and subtracting the difference. In order to change from additive strategy to multiplicative strategy, the researcher asked to find out the unit quantity and found the characteristics of students' mathematical notations in the following: Firstly, the students made the number which they wanted by multiplying and adding same numbers. Secondly, they represented the mid-points between natural numbers. Thirdly, they related $a{\div}b$ to decimal number, not $\frac{a}{b}$. Fourthly, they were inclined to divide the larger number with the smaller number without understanding the context of the problem. These results are interpreted as showing that lower level of performance in the dividing operation with the notations of fraction hinders the transformation from additive strategy to multiplicative strategy.

  • PDF

The Use of Traditional Algorithmic Versus Instruction with Multiple Representations: Impact on Pre-Algebra Students' Achievement with Fractions, Decimals, and Percent (전통적 알고리즘 교수법과 다양한 표상을 활용한 교수법의 비교: 분수, 소수, 퍼센트 내용을 중심으로)

  • Han, Sunyoung;Flores, Raymond;Inan, Fethi A.;Koontz, Esther
    • School Mathematics
    • /
    • v.18 no.2
    • /
    • pp.257-275
    • /
    • 2016
  • The purpose of this study was to investigate the impact of multiple representations on students' understanding of fractions, decimals, and percent. The instructional approach integrating multiple representations was compared to traditional algorithmic instruction, a form of direct instruction. To examine and compare the impact of multiple representations instruction with traditional algorithmic instruction, pre and post tests consisting of five similar items were administered with 87 middle school students. Students' scores in these two tests and their problem solving processes were analyzed quantitatively and qualitatively. The quantitative results indicated that students taught by traditional algorithmic instruction showed higher scores on the post-test than students in the multiple representations group. Furthermore, findings suggest that instruction using multiple representations does not guarantee a positive impact on students' understanding of mathematical concepts. Qualitative results suggest that the limited use of multiple representations during a class may have hindered students from applying their use in novel problem situations. Therefore, when using multiple representations, teachers should employ more diverse examples and practice with multiple representations to help students to use them without error.

Case Study on Meaningful use of Parameter - One Classroom of Third Grade in Middle School - (매개변수개념의 의미충실한 사용에 관한 사례연구 -중학교 3학년 한 교실을 대상으로-)

  • Jee, Young Myong;Yoo, Yun Joo
    • School Mathematics
    • /
    • v.16 no.2
    • /
    • pp.355-386
    • /
    • 2014
  • Algebraic generalization of patterns is based on the capability of grasping a structure inherent in several objects with awareness that this structure applies to general cases and ability to use it to provide an algebraic expression. The purpose of this study is to investigate how students generalize patterns using an algebraic object such as parameters and what are difficulties in geometric-arithmetic pattern tasks related to algebraic generalization and to determine whether the students can use parameters meaningfully through pattern generalization tasks that this researcher designed. During performing tasks of pattern generalization we designed, students differentiated parameters from letter 'n' that is used to denote a variable. Also, the students understood the relations between numbers used in several linear equations and algebraically expressed the generalized relation using a letter that was functions as a parameter. Some difficulties have been identified such that the students could not distinguish parameters from variables and could not transfer from arithmetical procedure to algebra in this process. While trying to resolve these difficulties, generic examples helped the students to meaningfully use parameters in pattern generalization.

  • PDF

Study on the Levels of Informal Statistical Inference of the Middle and High School Students (중·고등학생들의 비형식적 통계적 추리의 수준 연구)

  • Lee, Jung Yeon;Lee, Kyeong Hwa
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.533-551
    • /
    • 2017
  • The statistical education researchers advise instructors to educate informal statistical inference and they are paying close attention to the progress of the statistical inference in general. This study was conducted by analyzing the levels and the traits of each levels of the informal statistical inference of the middle and high school students for comparing the samples of data and estimating the graph of a population. Research has shown that five levels of the informal statistical inference were identified for comparing the samples of data: responses that are distracted or misled by an irrelevant aspect, responses that focus on frequencies of individual data points and hold a local view of the sample data sets, responses that the student's view of the data is transitioning from local to global, responses that hold a global view but do not clearly integrate multiple aspects of the distribution, and responses that integrate multiple aspects of the distribution. Another five levels of the informal statistical inference were identified for estimating the graph of a population: responses that are distracted or misled by an irrelevant aspect, responses that focus only on representativeness, responses that consider both representativeness and variability and focus on one particular aspect of the distribution, responses that focus on multiple aspects of distribution but do not clearly integrate them, and responses that integrate multiple aspects of the distribution.

An Analysis on Behavior Characteristics between Gifted Students and Talented Students in Open-end Mathematical Problem Solving (개방형 문제 해결과정에서 수학 영재아와 수학 우수아의 행동특성 분석)

  • Shin In-Sun;Kim See-Myung
    • Communications of Mathematical Education
    • /
    • v.20 no.1 s.25
    • /
    • pp.33-59
    • /
    • 2006
  • This study is intended to reconsider the meaning of the education for gifted/talented children, the foundation object of science high school by examining the behavior characteristics between gifted students and talented students in open-end mathematical problem solving and to provide the basis for realization of 'meaningful teaming' tailored to the learner's level, the essential of school education. For the study, 8 students (4 gifted students and 4 talented students) were selected out of the 1 st grade students in science high school through the distinction procedure of 3 steps and the behavior characteristics between these two groups were analyzed according to the basis established through the literature survey. As the results of this study, the following were founded. (1) It must be recognized that the constituent members of science high school were not the same excellent group and divided into the two groups, gifted students who showed excellence in overall field of mathematical behavior characteristics and talented students who had excellence in learning ability of mathematics. (2) The behavior characteristics between gifted students and talented students, members of science high school is understood and a curriculum of science high school must include a lesson for improving the creativity as the educational institutions for gifted/talented students, unlike general high school. Based on these results, it is necessary to try to find a support plan that it reduces the case which gifted students are generalized with common talented students by the same curriculum and induces the meaningful loaming to learners, the essential of school education.

  • PDF

Identifying Key Competencies Required for STEM Occupations (과학, 기술, 공학, 수학(STEM) 직종에 요구되는 핵심 역량 분석)

  • Jang, Hyewon
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.781-792
    • /
    • 2018
  • In modern society, as technology develops and industry diversifies, students can choose from a variety of career paths. Since science, technology, engineering, and mathematics require a longer education and experience than other fields, it is important to design science education policies based on the competencies required for science, technology, engineering, and mathematics (STEM) occupations. This study explores the definition of science and technology manpower and STEM occupations and identifies core competencies of STEM occupations using standard job information operated and maintained by the US Department of Labor ($O^*NET$). We specially analyzed ratings of the importance of skills (35 ratings), knowledge (33 ratings), and work activities (41 ratings) conducting descriptive analysis and principal component analysis (PCA). As a result, core competencies of STEM occupations consist of STEM problem-solving competency, Management competency, Technical competency, Social service competency, Teaching competency, Design competency, Bio-chemistry competency, and Public service competency, which accounts for 70% of the total variance. This study can be a reference for setting the curriculum and educational goals in secondary and college education by showing the diversity of science and technology occupations and the competencies required for STEM occupations.

Types of Mathematical Thinking that Appeared in Challenge Math in the 5th and 6th Grade Math Teacher's Guidebooks (5, 6학년 수학 교사용 지도서의 도전 수학에 나타난 수학적 사고의 유형)

  • Yim, Youngbin
    • Education of Primary School Mathematics
    • /
    • v.25 no.2
    • /
    • pp.143-160
    • /
    • 2022
  • This study was conducted to discuss educational implications by analyzing the types of mathematical thinking that appeared in challenge math in 5th and 6th grade math teacher's guidebooks. To this end, mathematical thinking types that can be evaluated and nurtured based on teaching and learning contents were organized, a framework for analyzing mathematical thinking was devised, and mathematical thinking appearing in Challenge Math in the 5th and 6th grade math teachers' guidebooks was analyzed. As a result of the analysis, first, 'challenge mathematics' in the 5th and 6th grades of elementary school in Korea consists of various problems that can guide various mathematical thinking at the stage of planning and implementation. However, it is feared that only the intended mathematical thinking will be expressed due to detailed auxiliary questions, and it is unclear whether it can cause mathematical thinking on its own. Second, it is difficult to induce various mathematical thinking at that stage because the questionnaire of the teacher's guidebooks understanding stage and the questionnaire of the reflection stage are presented very typically. Third, the teacher's guidebooks lacks an explicit explanation of mathematical thinking, and it will be necessary to supplement the explicit explanation of mathematical thinking in the future teacher's guidebooks.

Analysis of ICT literacy levels of elementary and middle school students according to their skill sets (초.중학생의 영재분야에 따른 ICT 리터러시 능력 수준 분석)

  • Lee, SeungJin;Kim, JaMee;Lee, WonGyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.2
    • /
    • pp.69-78
    • /
    • 2013
  • For the increasingly complicated and technology dependent 21st century, ICT literacy is being emphasized by education authorities as a key ability needed to succeed in a knowledge-based society. Accordingly, since 2007, several studies have been conducted to measure the ICT literacy levels of students. This study aimed at analyzing how ICT literacy levels vary according to students' skill sets from the viewpoint of educational convenience. To fulfill this goal, the ICT literacy abilities of 167 elementary students and 159 middle school students (all receiving education at "gifted students" education centers) were compared with the following results. First, elementary students displayed differences with regards to 'computer and network' and 'information society and ethics' among the content elements, and 'critical mind' and 'information communication' among capability elements according to their skill sets. Second, middle school students displayed differences with regards to 'information society and ethics' and 'information organization and creation' elements according to their skill sets. The significance of this study lies in the fact that it measured the ICT literacy levels of --and made suggestions for education to-- students specially gifted in information, science and mathematics rather than general students.

  • PDF

Development and application of teaching - learning materials for mathematically gifted students by using Fermat Point - ('페르마 점'을 활용한 중학교 수학 영재 교수·학습 자료 개발 및 적용)

  • Yoon, Joon-Ho;Yun, Jong-Gug
    • Communications of Mathematical Education
    • /
    • v.30 no.3
    • /
    • pp.335-351
    • /
    • 2016
  • The purpose of this study is to develop Project-Based Teaching-Learning materials for mathematically gifted students using a Fermat Point and apply the developed educational materials to practical classes, analyze, revise and correct them in order to make the materials be used in the field. I reached the conclusions as follows. First, Fermat Point is a good learning materials for mathematically gifted students. Second, when the students first meet the challenge of solving a problem, they observed, analyzed and speculated it with their prior knowledge. Third, students thought deductively and analogically in the process of drawing a conclusion based on observation. Fourth, students thought critically in the process of refuting the speculation. From the result of this study, the following suggestions can be supported. First, it is necessary to develop Teaching-Learning materials sustainedly for mathematically gifted students. Second, there needs a valuation criteria to analyze how learning materials were contributed to increase the mathematical ability. Third, there needs a follow up study about what characteristics of gifted students appeared.