• Title/Summary/Keyword: edible bird's nest

Search Result 3, Processing Time 0.023 seconds

A Study on Purification Process of Sialic Acid from Edible Bird's Nest Using Affinity Bead Technology (식용 제비집으로부터 비극성 비드기술을 활용한 시알산의 분리정제방법에 관한 연구)

  • Kim, Dong-Myong;Jung, Ju-Yeong;Lee, Hyung-Kon;Kwon, Yong-Sung;Baek, Jin-Hong;Han, In-Suk
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 2020
  • Sialic acid, which is contained in about 60-160 mg/kg in the edible bird's nest (EBN), is known to facilitate in the proper formation of synapses and improve memory function. The objective of this study is to extract effectively the sialic acid from edible bird's nest using affinity bead technology (ABT). After preparing the non-polar polymeric bead "KJM-278-28A" having a porous network structure, and then desorbed sialic acid was concentrated and dried. The analysis of the physicochemical properties of bead "KJM-278-28A" showed that the particle size was 400-700 ㎛, the moisture holding capacity was 67-70%, the surface area (BET) was 705-900 ㎡/g, and the average pore diameter 70-87 Å. The adsorption capacity of the bead "KJM-278-28A" for sialic acid was shown a strong physical force to bind sialic acid to the bead surface of 400 mg/L. In addition, as a result of analyzing the adsorption and desorption effects of sialic acid on water, ethanol, and 10% ethanol on the bead, it was confirmed that desorption effectively occurs from the beads when only ethanol is used. As a result of HPLC measurement of the separated sialic acid solution, a total of four sialic acid peaks of N-acetyl-neuraminic acid (Neu5Ac), α,β-anomer of Neu5Ac and N-glycoly-neuraminic acid were identified. Through these results, it was confirmed that it is possible to separate sialic acid from EBN extract with efficient and high yield when using ABT.

Uncovering the Antibacterial Potential of a Peptide-Rich Extract of Edible Bird's Nest against Staphylococcus aureus

  • Thi-Phuong Nguyen;Tang Van Duong;Thai Quang Le;Khoa Thi Nguyen
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1680-1687
    • /
    • 2024
  • The diverse pharmacological properties of edible bird's nest (EBN) have been elucidated in recent years; however, investigations into its antibacterial effects are still limited. In the present study, we explored the antibacterial activity of a peptide-rich extract of EBN against Staphylococcus aureus, a notorious pathogen. The EBN extract (EEE) was prepared by soaking EBN in 80% ethanol for 2 days at 60℃. Biochemical analyses showed that peptides at the molecular weight range of 1.7-10 kDa were the major biochemical compounds in the EEE. The extract exhibited strong inhibition against S. aureus at a minimum inhibitory concentration (MIC) of 125 ㎍/ml and a minimum bactericidal concentration (MBC) of 250 ㎍/ml. This activity could be attributed to the impact of the extract on cell membrane integrity and potential, biofilm formation, and reactive oxidative species (ROS) production. Notably, the expression of biofilm- and ROS-associated genes, including intercellular adhesion A (icaA), icaB, icaC, icaD, and superoxide dismutase A (sodA), were deregulated in S. aureus upon the extract treatment. Our findings indicate a noteworthy pharmacological activity of EBN that could have potential application in the control of S. aureus.

Improvements in Cognitive and Motor Function by a Nutrient Delivery System Containing Sialic Acid from Edible Bird's Nest (제비집 시알산 유래 영양전달체(Nutrient Delivery System)의 인지기능 및 운동기능 개선 효과)

  • Kim, Dong-Myong;Jung, Ju-Yeong;Lee, Hyung-Kon;Kwon, Yong-Seong;Baek, Jin-Hong;Han, In Suk
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.6
    • /
    • pp.614-623
    • /
    • 2020
  • The objective of this study was to produce a nutrient delivery system (NDS) using sialic acid extracted from edible bird's nest (EBN), which improves brain function in patients with Alzheimer's disease and Parkinson's disease, by affinity bead technology (ABT). The inhibitory activity of acetylcholinesterase (AChE) and pyramidal cells in the dentate gyrus of the hippocampus were analyzed to investigate the effect of a sialic acid NDS on Alzheimer's disease. Also, the effect of a sialic acid NDS on Parkinson's disease was evaluated by rota-rod test and pole test in an animal model. Among the groups treated with donepezil, EBN, and sialic acid NDS, the AChE activity was the lowest in the sialic acid NDS-treated group. The results of the hippocampus analysis of the rat model confirmed that the sialic acid NDS inhibited amyloid-beta accumulation depending upon the concentration. Also, the sialic acid NDS group showed more improvement in motor deterioration than the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced group in both the rota-rod test and pole test. Therefore, the sialic acid NDS had an effect of protecting not only Alzheimer's disease by inhibiting AChE and amyloid-beta accumulation, but Parkinson's disease by preventing neurotoxicity induced by MPTP.