DOI QR코드

DOI QR Code

A Study on Purification Process of Sialic Acid from Edible Bird's Nest Using Affinity Bead Technology

식용 제비집으로부터 비극성 비드기술을 활용한 시알산의 분리정제방법에 관한 연구

  • Kim, Dong-Myong (Biotechnology Research Institute, KJM Bio Ltd) ;
  • Jung, Ju-Yeong (Biotechnology Research Institute, KJM Bio Ltd) ;
  • Lee, Hyung-Kon (Biotechnology Research Institute, KJM Bio Ltd) ;
  • Kwon, Yong-Sung (Biotechnology Research Institute, KJM Bio Ltd) ;
  • Baek, Jin-Hong (R&D Center of Aloe, Kim Jung Moon Aloe Ltd) ;
  • Han, In-Suk (Department of Chemical Engineering, College of Engineering, The University of Utah)
  • 김동명 ((주)케이제이엠바이오 바이오연구소) ;
  • 정주영 ((주)케이제이엠바이오 바이오연구소) ;
  • 이형곤 ((주)케이제이엠바이오 바이오연구소) ;
  • 권용성 ((주)케이제이엠바이오) ;
  • 백진홍 ((주)김정문알로에) ;
  • 한인석 (유타대학교 공과대학 화학공학과)
  • Received : 2020.10.06
  • Accepted : 2020.12.01
  • Published : 2020.12.31

Abstract

Sialic acid, which is contained in about 60-160 mg/kg in the edible bird's nest (EBN), is known to facilitate in the proper formation of synapses and improve memory function. The objective of this study is to extract effectively the sialic acid from edible bird's nest using affinity bead technology (ABT). After preparing the non-polar polymeric bead "KJM-278-28A" having a porous network structure, and then desorbed sialic acid was concentrated and dried. The analysis of the physicochemical properties of bead "KJM-278-28A" showed that the particle size was 400-700 ㎛, the moisture holding capacity was 67-70%, the surface area (BET) was 705-900 ㎡/g, and the average pore diameter 70-87 Å. The adsorption capacity of the bead "KJM-278-28A" for sialic acid was shown a strong physical force to bind sialic acid to the bead surface of 400 mg/L. In addition, as a result of analyzing the adsorption and desorption effects of sialic acid on water, ethanol, and 10% ethanol on the bead, it was confirmed that desorption effectively occurs from the beads when only ethanol is used. As a result of HPLC measurement of the separated sialic acid solution, a total of four sialic acid peaks of N-acetyl-neuraminic acid (Neu5Ac), α,β-anomer of Neu5Ac and N-glycoly-neuraminic acid were identified. Through these results, it was confirmed that it is possible to separate sialic acid from EBN extract with efficient and high yield when using ABT.

Keywords

References

  1. Chantler, P. 2010. Swifts: a guide to the swifts and treeswifts of the world, Second Edition. Pica Press, Connecticut, pp 150-152.
  2. Matsukawa, N., Matsumoto, M., Bukawa, W., Chiji, H., Nakayama, K., Hara, H. and Tsukahara, T. 2011. Improvement of bone strength and dermal thickness due to dietary edible bird's nest extract in ovariectomized rats. Biosci. Biotechnol. Biochem. 75, 590-592. https://doi.org/10.1271/bbb.100705
  3. Marni, S., Marzura, M., Norzela, A., Khairunnisak, M., Bing, C. and Eddy, A. 2014. Preliminary study on free sialic acid content of edible bird nest from johor and kelantan. MJVR. 5, 9-14.
  4. Careena, S., Sani, D., Tan, S. N., Lim, C. W., Hassan, S., Norhafizah, M., Kirby, B. P., Ideris, A., Stanslas, A., Basri, H. B., and Lim, C. T. S. 2018. Effect of edible bird's nest extract on lipopolysaccharide-induced impairment of learning and memory in wistar rats. Evid. Based Complementary Altern. Med. 18, 1-7. https://doi.org/10.1186/s12906-017-2057-9
  5. Colombo, J. P., Garcia,-R. C., Guesry, P. and Rey, J. 2003. Potential effects of supplementation with amino acids, choline or sialic acid on cognitive development in you ng infants. Acta Paediatr. 92, 42-46. https://doi.org/10.1080/08035320310010437
  6. Goh, D. L. M., Chua, K. Y., Chew, F. T., Liang, R. C. Seow, T. K., Ou, L. K., Yi, F. C. and Lee, B. W. 2001. Immunochemical characterization of edible bird's nest allergens. J. Allergy Clin. Immunol. 107, 1082-1088. https://doi.org/10.1067/mai.2001.114342
  7. Kathan, R. H. and Weeks, D. I. 1969. Structure studies of collocalia mucoid: I. Carbohydrate and amino acid composition. Arch. Biochem. 134, 572-576. https://doi.org/10.1016/0003-9861(69)90319-1
  8. Hidalgo, A., Burgos, V., Viola, H., Medina, J. and Argibay, P. 2006. Differential expression of glycans in the hippocampus of rats trained on an inhibitory learning paradigm. Neuropathology. 26, 501-507. https://doi.org/10.1111/j.1440-1789.2006.00718.x
  9. Hodge, P. and Sherrington, D. C. 1980. Polymer supported reactions in organic synthesis. Wiley, New York, pp 1-92.
  10. Hodge, P. and Sherrington, D. C. 1988. Synthesis and separations using functional polymers. In: Hodge, P. (eds), Polymersupported reagents. Wiley, New York, pp 84-194.
  11. Mathur, N. K., Narang, C. K. and Wiliams, R. E. 1980. Polymers as aids in organic chemistry. In: Mathur, N. K. (eds), Determination of functionalization in polymer supports. Academic Press. New York, pp 37-51.
  12. Ford, W. T. 1986. Polymeric reagents and catalysts: an overview. Amer. Chem. Soc. 308, 1-16.
  13. Jacobelli, H., Bartholin, M. and Guyot, A. 1979. Styrene divinyl benzene copolymers. I. Texture of macroporous copolymers with ethyl-2-hexanoic acid in diluent. J. Appl. Polym. Sci. 23, 927-939. https://doi.org/10.1002/app.1979.070230327
  14. Wieczorek, P. P., Ilavsky, M., Kolarz, B. N. and Dusek, K. 1982. Mechanical behavior and structure of single beads of homogeneous and macroporous styrene-divinylbenzene copolymers. J. Appl. Polym. Sci. 27, 277-288. https://doi.org/10.1002/app.1982.070270129
  15. Kim, D. M., Jung, J. Y., Lee, H. K. and Kwon, Y. S. 2020. Korea Patent 10-2020-0012156.
  16. Kim, D. M., Jung, J. Y., Lee, H. K. and Kwon, Y. S. 2020. Korea Patent 10-2020-0049340.
  17. Brunauer, S., Emmett, P. H. and Teller, E. 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309-319. https://doi.org/10.1021/ja01269a023
  18. Barrett, E. P., Joyner, L. G. and Halenda, P. P. 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373-380. https://doi.org/10.1021/ja01145a126
  19. Fukuda, F., Umematsu, T., Hamada, A., Akiya, S., Komatsu, N. and Okubo, S. 1974. The polysaccharide from Lam pteromyces Japonicus. Chem. Pharm. Bull. 23, 1955-1959. https://doi.org/10.1248/cpb.23.1955
  20. Lee, J. W., Shim, W. G. and Ko, J. Y. 2004. Adsorption equilibria, kinetics, and column dynamics of chlorophenols on a nonionic polymeric sorbent, XAD-1600. Sep. Sci. Technol. 39, 2041-2065. https://doi.org/10.1081/SS-120034190
  21. Lim, Y. H., Lee, K. M., Lee, H. S. and Jo, Y. M. 2010. Adsorption capacity of CO2 adsorbent with the pretreatment temperature. J. Korean Soc. Atmos. Environ. 26, 286-297. https://doi.org/10.5572/KOSAE.2010.26.3.286
  22. Langmuir, I. 1918. The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361-1403. https://doi.org/10.1021/ja02242a004
  23. Freundlich, H. M. F. 1906. Over the adsoption in solution. J. Phys. Chem. 57, 385-470.
  24. Sips, R. 1948. On the structure of a catalyst surface. J. Chem. Phys. 16, 490-495. https://doi.org/10.1063/1.1746922
  25. Lai, S., Chen, R. and Suen, S. 2003. Adsorption separation for the extracts from Ginko biloba leaves using interme diate polarity resins. J Liq Chromatogr Relat Technol. 26, 2941-2960. https://doi.org/10.1081/JLC-120025055
  26. Kim, S., Oh, Y. J. 2000. Effect of initial adsorbed amount, temperature, and pH on the desorption of phenol from activated carbon by organic solvents. J Korean Soc Envir on Eng. 22, 1985-1994.
  27. Grant, T. M. and King, C. J. 1990. Mechanism of irreversible adsorption of phenolic compounds by activated carbons. Ind. Eng. Chem. Res. 29, 264-271. https://doi.org/10.1021/ie00098a017
  28. Leng, C. C. and Pinto, N. G. 1996. An investigation of the mechanisms of chemical regeneration of activated carbon. Ind. Eng. Chem. Res. 35, 2024-2031. https://doi.org/10.1021/ie950576a
  29. Kilduff, J. E. and King, C. J. 1997. Effect of carbon adsorption surface properties on the uptake and solvent regener ation of phenol. Ind. Eng. Chem. Res. 36, 1603-1613. https://doi.org/10.1021/ie960545v
  30. Shin, C.S., Kim, K. H. and Won, J. I. 2001. Adsorption on characteristics of ACF for the removal of VOCs in the PCB manufacturing process. J. Korean Soc. Atmos. Environ. 17, 67-74.
  31. Schliebs, R. and Arendt, T. 2011. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555-563. https://doi.org/10.1016/j.bbr.2010.11.058
  32. Lennarz, W. and Hart, G. 1994. Guide to techniques in glycobiology. In: Reuter, G. and Schauer, R. (eds), Determination of sialic acids, Academic Press, California, pp 168-199.