• 제목/요약/키워드: edge modeling

검색결과 270건 처리시간 0.025초

수소 압축기용 릴리프 밸브 모델링 및 성능해석에 관한 연구 (A Study on the Relief Valve Modeling and Performance Analysis of Hydrogen Compressor)

  • 박상법;김규보;전충환;윤소남;권병수
    • 한국수소및신에너지학회논문집
    • /
    • 제20권3호
    • /
    • pp.179-187
    • /
    • 2009
  • This paper presents a static and dynamic characteristics of the relief valve which is a kind of direct operated pressure control valve for hydrogen compressor. The valve is consisted of a main poppet, a spring, an adjuster and a valve body. The purpose of this study is development of the simulation model for relief valve by using commercial AMESlM$^{(R)}$ tool. Poppet with sharp edge seat type and ball poppet with sharp edge seat type compare for P-Q characteristic. The dynamic simulation results are presented the operating pressure characteristics of relief valve. High pressure power unit of which maximum pressure control range is 100MPa was manufactured, and the pressure control valve was experimented using the above-mentioned power unit. The new model of pressure control valve from this results was suggested. It was confirmed that the suggested valve has a good control performance from experimental setup.

공핍층 폭의 선형 변화를 가정한 단채널 MOSFET I-V 특성의 해석적 모형화 (Analytical Modeling for Short-Channel MOSFET I-V Characteristice Using a Linearly-Graded Depletion Edge Approximation)

  • 심재훈;임행삼;박봉임;여정하
    • 전자공학회논문지D
    • /
    • 제36D권4호
    • /
    • pp.77-85
    • /
    • 1999
  • 본 논문은 진성영역에서 공핍증 폭이 선형적으로 변화한다는 가정을 도입하고 전자이동도의 수평 및 수직 전계 이존성을 고려하여 단채널 MOSFET의 {{{{ { I-V }_{ } }}}} 특성에 대한 해석적 모형을 제시하였다. 이 모형으로부터 전 동작영역에 걸쳐 적용되는 문턱전압 방정식과 드레인전류 방정식을 도출하였다. 본 모형의 타당성을 검토하기 위하여 위 식들의 계산을 수행하였고, 그 결과 채널길이가 짧아짐에 따라 문턱전압이 지수함수적으로 감소하였으며, 아울러 채널길이변조, 채널이동로 열화 등을 본 모형에 의하여 일괄적으로 설명할 수 있었다.

  • PDF

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

Numerical assessment of post-tensioned slab-edge column connection systems with and without shear cap

  • Janghorban, Farshad;Hoseini, Abdollah
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.71-81
    • /
    • 2018
  • Introduction of prestressed concrete slabs based on post-tensioned (PT) method aids in constructing larger spans, more useful floor height, and reduces the total weight of the building. In the present paper, for the first time, simulation of 32 two-way PT slab-edge column connections is performed and verified by some existing experimental results which show good consistency. Finite element method is used to assess the performance of bonded and unbonded slab-column connections and the impact of different parameters on these connections. Parameters such as strand bonding conditions, presence or absence of a shear cap in the area of slab-column connection and the changes of concrete compressive strength are implied in the modeling. The results indicate that the addition of a shear cap increases the flexural capacity, further increases the shear strength and converts the failure mode of connections from shear rigidity to flexural ductility. Besides, the reduction of concrete compressive strength decreases the flexural capacity, further reduces the shear strength of connections and converts the failure mode of connections from flexural ductility to shear rigidity. Comparing the effect of high concrete compressive strengths versus the addition of a shear cap, shows that the latter increases the shear capacity more significantly.

Context-Based Minimum MSE Prediction and Entropy Coding for Lossless Image Coding

  • Musik-Kwon;Kim, Hyo-Joon;Kim, Jeong-Kwon;Kim, Jong-Hyo;Lee, Choong-Woong
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1999년도 KOBA 방송기술 워크샵 KOBA Broadcasting Technology Workshop
    • /
    • pp.83-88
    • /
    • 1999
  • In this paper, a novel gray-scale lossless image coder combining context-based minimum mean squared error (MMSE) prediction and entropy coding is proposed. To obtain context of prediction, this paper first defines directional difference according to sharpness of edge and gradients of localities of image data. Classification of 4 directional differences forms“geometry context”model which characterizes two-dimensional general image behaviors such as directional edge region, smooth region or texture. Based on this context model, adaptive DPCM prediction coefficients are calculated in MMSE sense and the prediction is performed. The MMSE method on context-by-context basis is more in accord with minimum entropy condition, which is one of the major objectives of the predictive coding. In entropy coding stage, context modeling method also gives useful performance. To reduce the statistical redundancy of the residual image, many contexts are preset to take full advantage of conditional probability in entropy coding and merged into small number of context in efficient way for complexity reduction. The proposed lossless coding scheme slightly outperforms the CALIC, which is the state-of-the-art, in compression ratio.

Fatigue life prediction for radial truck tires using a global-local finite element method

  • Jeong, Kyoung Moon;Beom, Hyeon Gyu;Kim, Kee-Woon;Cho, Jin-Rae
    • Interaction and multiscale mechanics
    • /
    • 제4권1호
    • /
    • pp.35-47
    • /
    • 2011
  • A global-local finite element modeling technique is employed in this paper to predict the fatigue life of radial truck tires. This paper assumes that a flaw exists inside the tire, in the local model. The local model uses an FEM fracture analysis in conjunction with a global-local technique in ABAQUS. A 3D finite element local model calculates the energy release rate at the belt edge. Using the analysis of the local model, a study of the energy release rate is performed in the crack region and used to determine the crack growth rate analysis. The result considers how different driving conditions contribute to the detrimental effects of belt separation in truck tire failure. The calculation of the total mileage on four sizes of radial truck tires has performed on the belt edge separation. The effect of the change of belt width design on the fatigue lifetime of tire belt separation is discussed.

Resource Allocation Strategy of Internet of Vehicles Using Reinforcement Learning

  • Xi, Hongqi;Sun, Huijuan
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.443-456
    • /
    • 2022
  • An efficient and reasonable resource allocation strategy can greatly improve the service quality of Internet of Vehicles (IoV). However, most of the current allocation methods have overestimation problem, and it is difficult to provide high-performance IoV network services. To solve this problem, this paper proposes a network resource allocation strategy based on deep learning network model DDQN. Firstly, the method implements the refined modeling of IoV model, including communication model, user layer computing model, edge layer offloading model, mobile model, etc., similar to the actual complex IoV application scenario. Then, the DDQN network model is used to calculate and solve the mathematical model of resource allocation. By decoupling the selection of target Q value action and the calculation of target Q value, the phenomenon of overestimation is avoided. It can provide higher-quality network services and ensure superior computing and processing performance in actual complex scenarios. Finally, simulation results show that the proposed method can maintain the network delay within 65 ms and show excellent network performance in high concurrency and complex scenes with task data volume of 500 kbits.

Seismic behavior of the shallow clayey basins subjected to obliquely incident wave

  • Khanbabazadeh, Hadi;Iyisan, Recep;Ozaslan, Bilal
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.183-195
    • /
    • 2022
  • Under the effects of the near-field earthquakes, the incident angle of the incoming wave could be different. In this study, the influences of some parameters such as incident angle, basin edge, peak ground acceleration level of the bedrock motion as well as different clay types with different consistency on the amplification behavior of the shallow basins are investigated. To attain this goal, the numerical analyses of the basins filled with three different clay types are performed using a fully nonlinear method. The two dimensional models of the basins are subjected to a set of strong ground motions with different peak ground acceleration levels and three different incident angles of 30◦, 45◦ and 90◦ with respect to the horizontal axes. The results show the dominant effect of the obliquely subjected waves at most cases. The higher effect of the 45◦ incident angle on the basin response was concluded. In the other part of this study, the spectral amplification curves of the surface points were compared. It was seen that the maximum spectral amplification of different surface points occurs at different periods. Also, it is affected by the increase in the peak acceleration level of the incoming motions.

Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps

  • Sun, Xiao;Tao, Junliang;Li, Jiale;Dai, Qingli;Yu, Xiong
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.311-328
    • /
    • 2017
  • The characteristics of boundary layers have significant effects on the aerodynamic forces and vibration of the wind turbine blade. The incorporation of active trailing edge flaps (ATEF) into wind turbine blades has been proven as an effective control approach for alleviation of load and vibration. This paper is aimed at investigating the effects of external trailing edge flaps on the flow pattern and velocity distribution within a boundary layer of a NREL 5MW reference wind turbine, as well as designing a new type of velocity sensors for future validation measurements. An aeroelastic-aerodynamic simulation with FAST-AeroDyn code was conducted on the entire wind turbine structure and the modifications were made on turbine blade sections with ATEF. The results of aeroelastic-aerodynamic simulations were combined with the results of two-dimensional computational fluid dynamic simulations. From these, the velocity profile of the boundary layer as well as the thickness variation with time under the influence of a simplified load case was calculated for four different blade-flap combinations (without flap, with $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$ flap). In conjunction with the computational modeling of the characteristics of boundary layers, a bio-inspired hair flow sensor was designed for sensing the boundary flow field surrounding the turbine blades, which ultimately aims to provide real time data to design the control scheme of the flap structure. The sensor element design and performance were analyzed using both theoretical model and finite element method. A prototype sensor element with desired bio-mimicry responses was fabricated and validated, which will be further refined for integration with the turbine blade structures.

장애인 차량을 위한 탈착식 시트의 자동 위치감지시스템에 관한 연구 (A Study on Automatic Position Detection System for the Detachable Mobile Seat of a Vehicle for the Handicapped)

  • 윤재웅;이수철
    • 한국산업정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.25-33
    • /
    • 2012
  • 본 논문에서는, 스스로 차량에 탑승하기 어려운 장애인을 대상으로 하는 장애인용 차량의 탈착식 시트에 관한 연구 내용을 다루었다. 탈착식 시트는 운전석의 시트가 휠체어 역할을 하는 시트를 의미하며, 본 연구는 이 시트가 차량에 자동으로 도킹하는 시스템에 관해 다루고 있다. 현재 출시되어 있는 탈착식 시트의 경우에는 주로 탑승자가 조이 스틱 등을 이용하여 수작업으로 도킹을 시도하고 있지만 이것은 불편한 장애인의 도킹을 매우 어렵게 하는 원인이 되고 있다. 본 연구에서는 차량 앞에있는 휠체어와의 위치를 자동으로 감지하고 측정하는 방법에 대해 기술하였다. 차량의 문에 도착해 있는 휠체어의 위치를 자동으로 감지하기 위해 리프트에 두 개의 초음파센서를 부착하였다. 초음파센서는 휠체어 뒷면에 부착된 감지판의 위치와 그 거리를 측정하게 된다. 본 논문에서는 휠체어와 리프트의 자동 도킹을 위한 세부적인 절차와 방법을 제시하였고, 그 정밀도도 분석함으로써 실질적인 활용이 가능함을 입증하였다.