• Title/Summary/Keyword: eddy current distribution

Search Result 126, Processing Time 0.024 seconds

A Study of the Characteristics on the Vacuum Interrupter with Axial Magnetic Field Type using 3 Dimension Finite Element Analysis (3차원 유한요소해석을 이용한 종자게형 진공 인터럽터의 특성고찰)

  • 하덕용;강형부
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.460-467
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density on the vacuum interrupter with axial magnetic field type using 3 dimension finite element analysis. An axial magnetic field parallel to the current flow in the arc column can improve the current breaking capacity of vacuum interrupter by affecting the arc mode. The axial magnetic flux density on the contact electrode surface is analyzed by inputting external current as a function of the transient time for sine half wave. And it also is analyzed within the gap distance of the contact electrode. The peak value of current but is decreased with the descending current on the contact electrode surface and within the gap distance of the contact electrode. The residual magnetic field is generated on the contact electrode surface and within the gap distance in the instant of zero current, which is due to the influence of eddy currents. The phase shift due to eddy currents, defined as time difference between the maximum value of current and axial magnetic field, is about 1ms in the center point of gap distance.

Analysis of Eddy Current and Hysteresis Loss Distribution from Fixing Structure of 154 kV Underground Transmission Cable (154 kV 지중송전선로의 고정용 금구류에서 발생하는 와전류 및 히스테리시스 손실 분포 해석)

  • Song, Hyeeun;Im, Sanghyeon;Kim, Kyoung Youn;Park, Gwansoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2018
  • The use of underground transmission power lines is expanding for the beauty and convenience of the near city. However, there is a lack of research on the losses from underground transmission power lines, especially those that support three-phase cables operating 24 hours a day. Since the supporting the cable is made of a material having a conductivity and a magnetic permeability, an eddy current and a hysteresis loss are generated due to a magnetic field caused by a current flowing in the cable. Losses occurring in this case adversely affect the power energy transfer efficiency, so research on loss is necessary. Therefore, in this paper, we analyzed the eddy currents and hysteresis losses that occur in a supporting a cable through three - dimensional finite element analysis.

DETECTION OF ODSCC IN SG TUBES DEPENDING ON THE SIZE OF THE CRACK AND ON THE PRESENCE OF SLUDGE DEPOSITS

  • Chung, Hansub;Kim, Hong-Deok;Kang, Yong-Seok;Lee, Jae-Gon;Nam, Minwoo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.869-874
    • /
    • 2014
  • It was discovered in a Korean PWR that an extensive number of very short and shallow cracks in the SG tubes were undetectable by eddy current in-service-inspection because of the masking effect of sludge deposits. Axial stress corrosion cracks at the outside diameter of the steam generator tubes near the line contacts with the tube support plates are the major concern among the six identical Korean nuclear power plants having CE-type steam generators with Alloy 600 high temperature mill annealed tubes, HU3&4 and HB3~6. The tubes in HB3&4 have a less susceptible microstructure so that the onset of ODSCC was substantially delayed compared to HU3&4 whose tubes are most susceptible to ODSCC among the six units. The numbers of cracks detected by the eddy current inspection jumped drastically after the steam generators of HB4 were chemically cleaned. The purpose of the chemical cleaning was to mitigate stress corrosion cracking by removing the heavy sludge deposit, since a corrosive environment is formed in the occluded region under the sludge deposit. SGCC also enhances the detection capability of the eddy current inspection at the same time. Measurement of the size of each crack using the motorized rotating pancake coil probe indicated that the cracks in HB4 were shorter and substantially shallower than the cracks in HU3&4. It is believed that the cracks were shorter and shallower because the microstructure of the tubes in HB4 is less susceptible to ODSCC. It was readily understood from the size distribution of the cracks and the quantitative information available on the probability of detection that most cracks in HB4 had been undetected until the steam generators were chemically cleaned.

Rotor Loss Analysis in Permanent Magnet High-Speed Machine Using Coupled FEM and Analytical Method

  • Jang Seok-Myeong;Cho Han-Wook;Lee Sung-Ho;Yang Hyun-Sup
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.272-276
    • /
    • 2005
  • This paper deals with the method to calculate the rotor eddy current losses of permanent magnet high-speed machines considering the effects of time/space flux harmonics. The flux harmonics caused by the slot geometry in the stator is calculated from the time variation of the magnetic field distribution obtained by the magneto-static finite element analysis and double Fast Fourier Transform. And, using the analytical approach considering the multiple flux harmonics and the Poynting vector, the rotor losses is evaluated in each rotor composite. Using this method is simple and workable for any kind of stator slot shape for rotor loss analysis.

Optimization of a Flywheel PMSM with an External Rotor and a Slotless Stator

  • Holm S.R;Polinder H.;Ferreira J.A.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.215-223
    • /
    • 2005
  • An electrical machine for a high-speed flywheel for energy storage in large hybrid electric vehicles is described. Design choices for the machine are motivated: it is a radial-flux external-rotor permanent-magnet synchronous machine without slots in the stator iron and with a shielding cylinder. An analytical model of the machine is briefly introduced whereafter optimization of the machine is discussed. Three optimization criteria were chosen: (1) torque; (2) total stator losses and (3) induced eddy current loss on the rotor. The influence of the following optimization variables on these criteria is investigated: (1) permanent-magnet array; (2) winding distribution and (3) machine geometry. The paper shows that an analytical model of the machine is very useful in optimization.

Eddy Current and Thermal Analysis of Induction Heating Roll (유도가열 히팅롤의 와전류 및 열해석)

  • Jang, S.M.;Cho, S.K.;Yoon, I.K.;Jeong, S.S.;Park, H.C.;Son, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.709-711
    • /
    • 2002
  • The Induction heating is used in various industry and ever-increasing number of applications. The heating roll, which is a kind of induction heating, widely used in curing of coatings and fiber industry. In this papaer, we analized thermal characteristic of induction heating roll by threedimensional eddy-current analysis. Using this analytic results, We could predict the thermal distribution of induction heating roll

  • PDF

The Characteristic Analysis of a Single-Sided Linear Induction Motor due to the Lateral Displacement of the Primary and the Secondary by the F.E.M. (유한 요소법에 의한 편측식 선형유도전동기의 1차측과 2차측의 횡방향 편위에 따른 특성해석)

  • 임달호;최창규;조철직;조윤현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.820-827
    • /
    • 1990
  • For the purpose of investigation the thrust force, the lateral force, and the eddy current loss when the primary and the secondary of a single-sided linear induction motor is displaced in the space, this paper proposes an analysis technique for the characteristics of the eddy current induced on the secondary and the magnetic flux density distribution in the y-z plane by F.E.M. To verify the effectiveness of this analysis technique, the starting-thrust force due to a lateral displacement is compared to the experimental data.

  • PDF

A FEM Analysis of Remote Field Eddy Current Distribution to CANDU Fuel Channel Tube(I) (CANDU형 핵연료 채널 압력관에 대한 원거리장 와전류의 자계분포 특성해석(I))

  • Huh, Hyung;Jung, Hyun-Kyu;Kim, Kern-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.690-692
    • /
    • 2001
  • A FEM model of the remote-field eddy current effect is presented for zirconium-2.5percent niobium(Zr-2.5%Nb) nuclear reactor pressure tubes to demonstrate the important electromagnetic field. Phenomena that describe this effect. This model is applied to evaluate the optimal operating frequency and detector position. There are many ambiguous experimental results connected with this technique. Finite element calculations can be used in the interpretation of these experimental results even though the electromagnetic fields measured in the remote-field technique are very small.

  • PDF

A study on in-process measurement of hardening depth for LASER surface hardening process control (강재의 레이저 표면경화 공정제어를 위한 경화층깊이의 실시간 측정에 관한 연구)

  • 우현구;박영준;조형석;한유희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.252-257
    • /
    • 1991
  • This paper proposed that the eddy-current measurement method can be used a means of in-process measuring the hardening depth in Laser surface treatment process. Also, this paper deal with the numerical analysis of magnetic flux distribution and experimental result of measurement. In Laser heat treatment process of steels, a thin layer of the substrate is rapidly heated to austenitizing temperature and subsequently cooled at a very fast rate due to the self-quenching by heat conduction into the bulk body, to produce a martensite structure which have low magnetic permeability. The eddy-current measurement method depends on the properties of material to be measured such as electric conductivity, magnetic permeability and geometry. In this paper, the hardening depth was measured by detecting relevant magnetic permeability changes caused by heat treatment of steels.

  • PDF

Analysis of Induction Heating System using FEM (유한요소법을 이용한 유도가열 시스템의 해석)

  • 임광섭;김우균;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.125-129
    • /
    • 1997
  • Induction is a method of heating electrically conductive materials such as metals. It is commonly used in process heating prior to metalworking and in heating, welding, and melting. The number of industrial and consumer items which undergo induction heating during some stage of their production is very large and rapidly expanding. So a program to analyze the induction heating system was developed through the research. This thesis contains the procedure for developing the program. Both eddy current and temperature distribution are obtained through the analysis of the induction heating system. The program was developed to calculate 2-dimensional axisymmetric problem. The validity of the program is scrutinized through the comparison between the analytic solution and the numerical solution.

  • PDF