• Title/Summary/Keyword: eco-friendly material

Search Result 563, Processing Time 0.026 seconds

A Study on the Expressive Types Analysis of Floral Art Design in Interior Space (실내공간의 화예디자인 표현유형 분석에 관한 연구)

  • Kim Jun-Yon;Han Young-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.4 s.51
    • /
    • pp.106-113
    • /
    • 2005
  • The advancements of the society aggravate ecological problems, and it is at a point where our living environment is under a serious threat. To resolve such problems, environmental friendly design concepts are evolving through various naming conventions such as conservation of global environment, environmental symbiosis, friendly environmental, nature-friendly, environmental friendly type, green building and eco-construction. Accordingly, in this research, for the purposes of healthy living environmental construction, nature as the subject of its design and highly praised as a new design arena, floral art design theory and its functions, as well as its examples are explored. With the Information available, I was able to confirm that, in interior decorating, floral art design is used as a tool for expressing environmental friendly space, and gradually its necessity and the scope of its application have been broadened. Therefore, utilization of floral art design is to fabricate environmental friendly interior space; and it is expected as a substitute for accomplishing green amenity, and its study should continue for the years to come.

Manufacture of Rainbow-colored Veneer by Natural Dyeing

  • Suh, Jin Suk;Park, Ryeong Jae;Cho, Yeong Hee;Song, Eon Ja;Kim, Jong In;Park, Sang Bum
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.3
    • /
    • pp.286-290
    • /
    • 2015
  • The wood veneers were clearly rainbow-colored with natural dyes. As shown through Korean-style jacket with stripes of multi-colors beyond traditional obang colors (red, blue, yellow, black and white colors), eco-friendly coloring methods representing Korean colors familiar from old times could be used nobly by coloring natural wood veneer being raw material of wood products. In terms of industrialization, the study to manifest korean color, substituting chemical stains such as dye and pigment, would be necessary. In order to realize this purpose, the study about economical dyeing materials and characteristics, that is, mordant, dyeing and drying techniques showing environment-friendly coloring and high coloration level ought to be followed. In addition to this, investigating discoloration transition by fading test for interior and exterior uses would have to be carried out.

Selection and Control Effect of Environmental Friendly Organic Materials for Controlling the Ginseng Alternaria Blight (인삼에 발생하는 점무늬병의 친환경적 방제를 위한 유기농업자재 선발 및 기 선발된 자재의 효과시험)

  • Kim, Woo Sik;Park, Jee Sung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.388-393
    • /
    • 2013
  • This study was conducted to select environmental friendly organic materials for controlling the ginseng alternaria blight and to evaluate their effects from 2011 to 2012. Alternaria blight is caused by Alternaria panax and is the most common ginseng disease in Korea. Environmental friendly organic materials were used to reduce amount of chemical fungicides and the number of spray for control of Ginseng Alternaria leaf blight. In 4 years of ginseng, control value of Alternaria leaf blight by single application of Defenoconazole WP was 82.3% and those of single application was 62.0~75.9%. Consequently, mixed or alternated application of eco-material products could be recommended as a control method to reduce the amount of fungicides.

Experimental assessment for friendly-environment functional Inorganic mixed rubber asphalt Seismic waterproof strengthening method (친환경 기능성 무기질계와 고무아스팔트를 혼합한 내진방수 보강공법에 대한 실험적 평가)

  • Baek, Jong-Myeong;Hwang, Young-Ho;Shon, Jung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1802-1808
    • /
    • 2008
  • Recent interest in the construction sector, rising about the environment and eco-friendly recycled material resources, and increase the development of method But despite these efforts, and the diverse functional and structural changes in the structure can not be an appropriate response to the functional waterproof structural changes in the structures and appropriate response Diversification does not waterproof and functional issues such as durability, and which are occurring due to the structure to secure stability and durability, never sees the conservative economic losses due to import constructability reinforcement situation. Therefore, this study applies to structure the existing waterproof method (hereinafter referred to as structures water-resistant methode), and to review recent issues of environmental pollution and resource waste, and taking on environmental issues, such as Revelation and functional Inorganic mixed in a way to leverage the manufacturing water-resistant material "Re Inorganic, functional and environmentally friendly high-viscosity mix asphalt waterproof rubber reinforcements, and taking conservative" for the characterization and performance assessment to the issues raised by the structure and whether the judge would respond.

  • PDF

A Study on Evaluation of Field Applicability of Flexible Waterproofing Material with High Adhesion Using Reclaimed Natural Latex (천연 라텍스 재생고무를 활용한 고점착형 시트 방수재의 현장 적용성 평가 연구)

  • Oh, Sangkeun;Jo, Ilkyu;Kim, Jinsung;Kim, Dongbum;Lee, Jongyong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • This study has been conducted in order to propose Eco-friendly and High functional waterproofing technology available for structure by verifying application and performance of water proofing material(s) in purpose of making effective use of reclaimed rubber. As s result of 12 months evaluation, stable performance for water pressure and lateral pressure of $0.3N/mm^2$ were confirmed. Also, as the time elapsed, the amount of water absorption and adhesion performance showed only a slight difference(+0.05g, $-0.1Nmm^2$) as well, which in turn confirmed that waterproofing performance remains stable. Studies show that it is expected to expand recycling technology of natural rubber by applying reclaimed rubber on construction waterproofing field, and to hold a technical superiority by using eco-friendly material in construction waterproofing market throughout active application of these types of research.

  • PDF

Sound absorption characteristics of foamed aluminum considering installing on the wall and in the space (발포알루미늄의 시공방법에 따른 흡음 특성에 관한 연구)

  • Park, Hyeon-Ku;Kim, Hang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • Foamed aluminum is an eco-friendly material that is reusable and safe against fire. These superior characteristics have many advantages in the field of building and construction and in cruise ships as sound absorbers. So far, the research on foamed aluminum has been focused on the sound absorption performance using the foaming ratio. Foamed aluminum, when compared with the existing sound absorbers such as glass wool or rock wool, has a better structural performance, and it can be installed on walls in many different ways. This study conducted experiments on the sound absorption characteristics considering the various applications of foamed aluminum. The effects of painting surfaces with the finishing material were compared to that of the normal surface, and the effects of vertical installation and hanging from the ceiling was compared with the effects of installing on the floor.

Dyeing Property of Nylon Suede Fabric Dyed with Sulphur Black Dye (흑색 황화염료에 의한 나일론 스웨이드 직물의 염색 특성 연구)

  • Lee, Minju;Lee, Jeong Hoon;Jung, Dae-Ho;Lee, Mikyung;Ko, Jae Wang;Lee, Seung Geol
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • Demands for nylon suede as an artificial leather are increasing due to its functionality and aesthetics. To achieve high value added nylon suede based on green technology, this study was carried out in order to obtain useful data for the nylon suede fabrics with eco-friendly dyeing process by a pad-steam method instead of a dip dyeing process using sulphur black dye to reduce the industrial waste of water. The dyeability of the nylon suede was investigated according to reducing temperatures, dye concentrations, and reducing agent's concentrations. Throughout the results of the CIE $L^*a^*b^*$ and Munsell values, the optimized dyeing conditions of the nylon suede using sulphur black dye are $70^{\circ}C$ of dyeing temperature, 30% o.w.f. of dye concentration, and $9g/{\ell}$ of reduction agent concentration, respectively. Furthermore washing colorfastness, light colorfastness and perspiration colorfastness were achieved in the range of 4-5 grades.

Optimizing Lamination Process for High-Power Shingled Photovoltaic Module (고출력 슁글드 태양광 모듈의 라미네이션 공정조건 최적화)

  • Jeong, Jeongho;Jee, Hongsub;Kim, Junghoon;Choi, Wonyong;Jeong, Chaehwan;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.281-291
    • /
    • 2022
  • Global warming is accelerating due to the use of fossil fuels that have been used continuously for centuries. Now, humankind recognizes its seriousness, and is conducting research on searching for eco-friendly and sustainable energy. In the field of solar energy, which is a kind of eco-friendly and sustainable, many studies are being conducted to enhance the output performance of the module. In this study, the output improvement for the shingled module structure was studied. In order to improve the output performance of the module, the thickness of the encapsulant was increased, and the lamination process conditions have been improved accordingly. After that, the crosslinking rate was analyzed, and the suitability of the lamination process conditions was judged using this. In addition, a peeling test was conducted to analyze the correlation between the adhesion of the encapsulant and the output performance of the module. Finally, the optimization for the encapsulant material and the lamination process conditions for high-power shingled modules was established, and accordingly, the market share of high-power shingled modules in the solar module market can be expected to rise.

Potential use of local waste scoria as an aggregate and SWOT analysis for constructing structural lightweight concrete

  • Islam, A.B.M. Saiful;Walid, Walid;Al-Kutti, A.;Nasir, Muhammad;Kazmi, Zaheer Abbas;Sodangi, Mahmoud
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This study aims to investigate the influence of scoria aggregate (SA) and silica fume (SF) as a replacement of conventional aggregate and ordinary Portland cement (OPC), respectively. Three types of concrete were prepared namely normal weight concrete (NWC) using limestone aggregate (LSA) and OPC (control specimen), lightweight concrete (LWC) using SA and OPC, and LWC using SA and partial SF (SLWC). The representative workability and compressive strength properties of the developed concrete were evaluated, and the results were correlated with non-destructive ultrasonic pulse velocity and Schmidt hammer tests. The LWC and SLWC yielded compressive strength of around 30 MPa and 33 MPa (i.e., 78-86% of control specimens), respectively. The findings indicate that scoria can be beneficially utilized in the development of structural lightweight concrete. Present renewable sources of aggregate will preserve the natural resources for next generation. The newly produced eco-friendly construction material is intended to break price barriers in all markets and draw attraction of incorporating scoria based light weight construction in Saudi Arabia and GCC countries. Findings of the SWOT analysis indicate that high logistics costs for distributing the aggregates across different regions in Saudi Arabia and clients' resistant to change are among the major obstacles to the commercialized production and utilization of lightweight concrete as green construction material. The findings further revealed that huge scoria deposits in Saudi Arabia, and the potential decrease in density self-weight of structural elements are the major drivers and enablers for promoting the adoption of lightweight concrete as alternative green construction material in the construction sector.

An Experimental Study on the Basic Properties of Cement Boards of Waste Wood (폐목질을 사용한 시멘트보드의 기초적 특성에 관한 실험적 연구)

  • 황병준;김광기;박희곤;강태경;백민수;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.57-60
    • /
    • 2004
  • Recently. as the alternatives to preserve environment such as effective usage of wastes or unusable resources are drawing attentions, researches and measures for the two tasks, which are reuse of waste wood and development of eco-friendly materials, are being examined and established in various fields. However, they are still insufficient. Therefore, in this study, for the efficient application of waste woods and eco-friendly effects, mortar was produced using sawdust af the waste wood and mineral material cement for combination, in order to produce inorganic boards using waste woods, which were made when sawing. The present study purposed to analyze the physical and dynamic characteristics of woody cement boards, which were made by modifying water-cement ratio for each wood inclusion rate based on a hardening-accelerator inclusion rate set in previous studies and, based on the findings. to provide basic data about the physical properties of inorganic boards made of waste wood, in order to Produce woody cement boards using waste wood, which has problems in being used in the manufacturing of woody cement boards.

  • PDF