• Title/Summary/Keyword: earthquake warning

Search Result 58, Processing Time 0.028 seconds

Rapid Earthquake Location for Earthquake Early Warning (지진조기경보를 위한 신속 진앙위치 결정)

  • Kim, Kwang-Hee;Rydelek, Paul A.;Suk, Bong-Chool
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.73-79
    • /
    • 2008
  • Economic growth, industrialization and urbanization have made society more vulnerable than ever to seismic hazard in Korea. Although Korea has not experienced severe damage due to earthquakes during the last few decades, there is little doubt of the potential for large earthquakes in Korea as documented in the historical literature. As we see no immediate promise of short-term earthquake prediction with current science and technology, earthquake early warning systems attract more and more attention as a practical measure to mitigate damage from earthquakes. Earthquake early warning systems provide a few seconds to tens of seconds of warning time before the onset of strong ground shaking. To achieve rapid earthquake location, we propose to take full advantage of information from existing seismic networks; by using P wave arrival times at two nearest stations from the earthquake hypocenter and also information that P waves have not yet arrived at other stations. Ten earthquakes in the Korean peninsula and its vicinity are selected for the feasibility study. We observed that location results are not reliable when earthquakes occur outside of the seismic network. Earthquakes inside the seismic network, however, can be located very rapidly for the purpose of earthquake early warning. Seoul metropolitan area may secure $10{\sim}50$ seconds of warning time before any strong shaking starts for certain events. Carefully orchestrated actions during the given warning time should be able to reduce hazard and mitigate damages due to potentially disastrous earthquakes.

A Development Of A System For Earthquake Warning Using Social Media (소셜미디어를 이용한 지진정보전달 시스템 개발)

  • Jeon, Inchan;Choi, Seong-Jong;Lee, Yong-Tae;Hong, Sung-Dae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.169-175
    • /
    • 2012
  • The Great East Japan Earthquake left some implications. Especially the case of alerting by social media had present. This paper suggests system for posting earthquake information to microblog like twitter and me2day. Microblog is most efficient and effective social media. So, this system receive earthquake information from the Earthquake Broadcast System in the Korea Meteorological Administration and post the information to twitter and me2day. By this system, earthquake information can be notice easily and response can be checked.

Post-earthquake warning for Vrancea seismic source based on code spectral acceleration exceedance

  • Balan, Stefan F.;Tiganescu, Alexandru;Apostol, Bogdan F.;Danet, Anton
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.365-372
    • /
    • 2019
  • Post-earthquake crisis management is a key capability for a country to be able to recover after a major seismic event. Instrumental seismic data transmitted and processed in a very short time can contribute to better management of the emergency and can give insights on the earthquake's impact on a specific area. Romania is a country with a high seismic hazard, mostly due to the Vrancea intermediate-depth earthquakes. The elastic acceleration response spectrum of a seismic motion provides important information on the level of maximum acceleration the buildings were subjected to. Based on new data analysis and knowledge advancements, the acceleration elastic response spectrum for horizontal ground components recommended by the Romanian seismic codes has been evolving over the last six decades. This study aims to propose a framework for post-earthquake warning based on code spectrum exceedances. A comprehensive background analysis was undertaken using strong motion data from previous earthquakes corroborated with observational damage, to prove the method's applicability. Moreover, a case-study for two densely populated Romanian cities (Focsani and Bucharest) is presented, using data from a $5.5M_W$ earthquake (October 28, 2018) and considering the evolution of the three generations of code-based spectral levels for the two cities. Data recorded in free-field and in buildings were analyzed and has confirmed that no structural damage occurred within the two cities. For future strong seismic events, this tool can provide useful information on the effect of the earthquake on structures in the most exposed areas.

A Study on the Emergency Public Warning System (긴급 공공경보시스템에 관한 연구)

  • Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.879-886
    • /
    • 2011
  • Warning notification system base on mobile communication providers, is a warning information provider which senses the disaster and warning condition, provides the warning message to the entrepreneur and its mobile terminal. In this paper, for protecting our lives and properties, we study on disaster warning system ISO TC233's WG3's Public Warning model, Korea Disaster Forecasting and Warning System, disaster Forecasting and Warning System's role, and Colour-coded Alert etc.

Deep Learning-Based, Real-Time, False-Pick Filter for an Onsite Earthquake Early Warning (EEW) System (온사이트 지진조기경보를 위한 딥러닝 기반 실시간 오탐지 제거)

  • Seo, JeongBeom;Lee, JinKoo;Lee, Woodong;Lee, SeokTae;Lee, HoJun;Jeon, Inchan;Park, NamRyoul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.71-81
    • /
    • 2021
  • This paper presents a real-time, false-pick filter based on deep learning to reduce false alarms of an onsite Earthquake Early Warning (EEW) system. Most onsite EEW systems use P-wave to predict S-wave. Therefore, it is essential to properly distinguish P-waves from noises or other seismic phases to avoid false alarms. To reduce false-picks causing false alarms, this study made the EEWNet Part 1 'False-Pick Filter' model based on Convolutional Neural Network (CNN). Specifically, it modified the Pick_FP (Lomax et al.) to generate input data such as the amplitude, velocity, and displacement of three components from 2 seconds ahead and 2 seconds after the P-wave arrival following one-second time steps. This model extracts log-mel power spectrum features from this input data, then classifies P-waves and others using these features. The dataset consisted of 3,189,583 samples: 81,394 samples from event data (727 events in the Korean Peninsula, 103 teleseismic events, and 1,734 events in Taiwan) and 3,108,189 samples from continuous data (recorded by seismic stations in South Korea for 27 months from 2018 to 2020). This model was trained with 1,826,357 samples through balancing, then tested on continuous data samples of the year 2019, filtering more than 99% of strong false-picks that could trigger false alarms. This model was developed as a module for USGS Earthworm and is written in C language to operate with minimal computing resources.

A Study of the Application of Earthquake Early Warning System for the Enhancements in Protective Action by Korea National Park (국립공원의 지진 대응 체계 개선을 위한 지진 조기경보 시스템의 적용에 관한 연구)

  • Yang, Eomzi;Ha, Seong Jun;Kim, Won Kyung;Yun, Tae Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.439-448
    • /
    • 2018
  • Conventional Earthquake Early Warning System (EEWS) detects the propagated P-wave from epicenter which should be achieved within 5 seconds to provide seconds to minutes of warning, allowing people to prepare for protective actions. EEWS in Korea is currently capable of providing a warning within 50 seconds after the primary P-wave detection, however, it is well-known that earthquake warning systems operating around Korean National Parks (KNP) have limited capability to fully monitor earthquake events. This study, therefore, presents a strategy to quantify the potential vulnerability to earthquake hazards by superimposing the distribution of Korea Integrated Seismic System (KISS) and the discretized map of KNP. Total 22 national parks are evaluated, and the results suggest that the improvement of the on-site systems should be necessitated for Gyoengju, Gyeryongsan, Songnisan, Gayasan, and Deogyusan national parks, whereas enhancement of regional systems is required for Bukhansan national park.

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

Seismicity and Response for Mitigating Seismic Hazards (지진활동 및 지진재해 대응 방향)

  • Lee, Deok-Gi
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.4
    • /
    • pp.47-51
    • /
    • 2008
  • The different result and response of the earthquakes, occurred consecutively at China and Japan in May and June. respectively, is suggestive of the importance of preparedness against earthquake disaster. We learned lesson, although indirect, that the earthquake early warning. earthquake-resistant design, and people's concepts on earthquake can greatly reduce the earthquake hazards. The more preparedness we have in present, the less hazards we will experience for future.

  • PDF

Development of Earthquake Early Warning System nearby Epicenter based on P-wave Multiple Detection (진원지 인근 지진 조기 경보를 위한 선착 P파 다중 탐지 시스템 개발)

  • Lee, Taehee;Noh, Jinseok;Hong, Seungseo;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2019
  • In this paper, the P-wave multiple detection system for the fast and accurate earthquake early warning nearby the epicenter was developed. The developed systems were installed in five selected public buildings for the validation. During the monitoring, a magnitude 2.3 earthquake occurred in Pohang on 26 September 2019. P-wave initial detection algorithms were operated in three out of four systems installed in Pohang area and recorded as seismic events. At the nearest station, 5.5 km from the epicenter, P-wave signal was detected 1.2 seconds after the earthquake, and S-wave was reached 1.02 seconds after the P-wave reached, providing some alarm time. The maximum accelerations recorded in three different stations were 6.28 gal, 6.1 gal, and 5.3 gal, respectively. The alarm algorithm did not work, due to the high threshold of the maximum ground acceleration (25.1 gal) to operate it. If continuous monitoring and analysis are to be carried out in the future, the developed system could use a highly effective earthquake warning system suitable for the domestic situation.

On-Site Earthquake Early Warning System Design and Performance Evaluation Method (현장 지진조기경보시스템의 설계 및 성능평가 방법)

  • Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.179-185
    • /
    • 2020
  • Recently, in order to improve the performance of the Earthquake Early Warning System (EEWS) and to supplement the effects of earthquake disaster prevention in epicenters or near epicenters, development of on-site EEWS has been attempted. Unlike the national EEWS, which is used for earthquake disaster prevention by using seismic observation networks for earthquake research and observation, on-site EEWS aims at earthquake disaster prevention and therefore requires efficient design and evaluation in terms of performance and cost. At present, Korea lacks the necessary core technologies and operational know-how, including the use of existing EEWS design criteria and evaluation methods for the development of On-Site EEWS as well as EEWS. This study proposes hardware and software design directions and performance evaluation items and methods for seismic data collection, data processing, and analysis for localization of On-Site EEWS based on the seismic accelerometer requirements of the Seismic and Volcanic Disaster Response Act.