• 제목/요약/키워드: earthquake forces

Search Result 405, Processing Time 0.024 seconds

Effect of Reference Axis of RC Buildings on Seismic Design Member Forces (RC 건물에서 주축의 설정이 설계지진력에 미치는 영향)

  • Lee, Han-Seon;Ko, Dong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.704-707
    • /
    • 2004
  • The structure should be designed to be safe to any direction of earthquake input. However, the reference axes whereby the structure is analyzed and designed against earthquake may influence the design member forces. This study is concerned with the effect of the choice of the reference axes on the seismic design member forces. The analytical results on member forces using the principal axes suggested by Wilson and the global axes generally adopted in design offices show that the values of member forces by the principal axes be about $15\%$ smaller than those by the global axes in the example structure.

  • PDF

Earthquake Simulation Tests of a 1 :5 Scale 3-Story Masonry-Infilled Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 1999
  • The objective of this research is to observe the actual response of a low-rise nonseismic moment-resisting masonry-infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. The reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N2IE component earthquake ground motion, whose peak ground acceleration(PGA) was modified to 0.12g, 0.2g, 0.3g, and 0.4g. The g1oba1 behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of the structure were measured. Before and after each earthquake simulation test, free vibration tests and white noise tests were performed to find the changes in the natural period of the model. When the results of the masonry-infilled frame are compared with those of the bare frame, it can be recognized that masonry infills contribute to the large increase in the stiffness and strength of the g1oba1 structure whereas it also accompanies the increase of earthquake inertia forces. However, it is judged that masonry infills may be beneficial to the performance of the structure since the rate of increase in strength appears to be greater than that of the induced earthquake inertia forces.

  • PDF

The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions

  • Erzin, Yusuf;Cetin, T.
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • In this study, artificial neural network (ANN) and multiple regression (MR) models were developed to predict the critical factor of safety ($F_s$) of the homogeneous finite slopes subjected to earthquake forces. To achieve this, the values of $F_s$ in 5184 nos. of homogeneous finite slopes having different slope, soil and earthquake parameters were calculated by using the Simplified Bishop method and the minimum (critical) $F_s$ for each of the case was determined and used in the development of the ANN and MR models. The results obtained from both the models were compared with those obtained from the calculations. It is found that the ANN model exhibits more reliable predictions than the MR model. Moreover, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and the scaled percent error were computed. Also, the receiver operating curves were drawn, and the areas under the curves (AUC) were calculated to assess the prediction capacity of the ANN and MR models developed. The performance level attained in the ANN model shows that the ANN model developed can be used for predicting the critical $F_s$ of the homogeneous finite slopes subjected to earthquake forces.

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.

Application of Seismic Isolation Technique in Residential-Commercial Building (주상복합건물에 대한 면진기술의 적용)

  • 이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.465-472
    • /
    • 2000
  • Seismic isolation technique has been applied mainly in low rise buildings and its seismic performance was satisfactory during Kobe Earthquake. However, in the case of medium and/or high-rise buildings, mid-story isolation could be more technically feasible than base isolation to reduce earthquake forces. In this paper, the seismic effectiveness of mid-story isolation in medium and/or high-rise shear building as well as low rise shear building was evaluated analytically. After verifying the effectiveness of mid-story isolation technique, this method also applied in residential-commercial building. It was found that mid-story isolation, that is isolation between upper residential area and lower commercial area, could reduce inter-story drift and floor shear forces comparing to the conventional fixed base.

  • PDF

Non-linear Time History Analyses of a Piloti-type Building Structure (필로티형 건물의 비선형 시간이력해석)

  • Lee, Han-Seon;Ko, Dong-Woo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.169-176
    • /
    • 2005
  • Many RC building structures of multiple uses constructed in Korea have the irregularities of torsion and soft story at bottom stories. A typical irregular building was selected as prototype and shaking table tests were performed to investigate the seismic performance of this building. The objective of this study is to evaluate the correlation between the experimental and analytical responses of this irregular building structure subjected to the earthquake excitation by using OpenSees(Open System for Earthquake Engineering Simulation). The results of analyses simulate well the effect of axial forces on the shear force of column and axial deformation. However, some discrepancy between analytical and experimental results in the distribution of shear forces and overturning deformation were observed.

  • PDF

Evaluation of Seismic Force Effects on Skew Bridges (사교에 작용하는 지진하중의 영향 평가)

  • 박형기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.113-119
    • /
    • 1998
  • This study is focused on evaluation of the structural behavior of skewed bridge during earthquake. The variation of natural frequencies and the lateral forces at pier shoes by the skewness and the rotational effect about vertical axis of skewed bridge due to seismic activity are analytically evaluated and identified through case studies. For this purpose, the composite steel girder highway bridges are selected as case study models. The seismic analyses by response spectrum method and time history method are performed for the selected models. It has been recognized that the frequency of longitudinal model increased as the skew angle decreased, while the lateral mode frequency showed the opposite trends. When the skew angle decreased, longitudina seismic forces of the bridge at the pier were increased but decreased in transverse direction. And it also has been found that the skewed bridges of the case study models showed the rotational behavior about vertical axis due to motion of San Fernando earthquake at Pacoima Dam.

  • PDF

The Shaking Table Test of Isolated Model EDG System (면진된 모형디젤발전기의 지진응답실험)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.479-486
    • /
    • 2006
  • This paper presents tile results of experimental studies of the isolated Model EDG Systems. For the experimental work, the scaled model of EDG system and the isolation systems were developed. The target EDG model is 16PC2-5V400 which was manufactured by the SEMT Pielstick corporation. The Coil Spring and Viscous Damper Systems were selected for the isolation system. The Coil Spring and Viscous Damper systems can reduce not only seismic forces but also the operating vibration. For the input seismic motions, the scenario earthquake and the artificial earthquakes which were developed as NRC design spectrum and Uniform hazard Spectrum(UHS) were selected. As a result, at least 20% of seismic forces were decreased as the isolation system.

  • PDF

The 29 May 2004 Offshore Southeast Coast of Korea Earthquake Sequence: Shallow Earthquakes in the Ulleung Back-arc basin, East Sea (Sea of Japan)

  • Kim, Won-Young;Noh, Myung-Hyun;Choi, Ho-Sun
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.249-262
    • /
    • 2006
  • The 29 May 2004 offshore Uljin, Korea earthquake was predominantly thrust-faulting at a depth of approximately 12 (±2) km. The mainshock attained the seismic moment of M0 =5.41 (±1.87)  1016 N m (Mw = 5.1). The focal mechanism indicates a subhorizontal P-axis trending 264° and plunging 2°. The orientation of P- and T-axis is consistent with the direction of absolute plate motion generally observed within the plates, hence the cause of the May 29 shock is the broad-scale stress pattern from the forces acting on the downgoing slab along the Japan trench and inhibiting forces balancing it. The 29 May 2004 earthquake occurred along a deep seated (~12 km), pre-existing feature that is expressed on the surface as the basement escarpment along the western and southern slopes of the Ulleung basin. The concentrated seismicity along this basement escarpment suggests that this feature may qualify as a seismic zone - the Ulleung basement escarpment seismic zone (UBESZ).

  • PDF

An Analytical Study on Seismic Response Characteristics Considering Soil-Structure-Equipment Interaction (지반-구조물-설비 상호작용을 고려한 지진응답 특성에 관한 해석적 연구)

  • Oh, Hyeon-Jun;Kim, Yousok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.253-263
    • /
    • 2023
  • Non-structural elements, such as equipment, are typically affixed to a building's floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building's structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.