• 제목/요약/키워드: earth and space

검색결과 1,803건 처리시간 0.03초

Ground Deformation Evaluation during Vertical Shaft Construction through Digital Image Analysis

  • Woo, Sang-Kyun;Woo, Sang Inn;Kim, Joonyoung;Chu, Inyeop
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.285-293
    • /
    • 2021
  • The construction of underground structures such as power supply lines, communication lines, utility tunnels has significantly increased worldwide for improving urban aesthetics ensuring citizen safety, and efficient use of underground space. Those underground structures are usually constructed along with vertical cylindrical shafts to facilitate their construction and maintenance. When constructing a vertical shaft through the open-cut method, the walls are mostly designed to be flexible, allowing a certain level of displacement. The earth pressure applied to the flexible walls acts as an external force and its accurate estimation is essential for reasonable and economical structure design. The earth pressure applied to the flexible wall is closely interrelated to the displacement of the surrounding ground. This study simulated stepwise excavation for constructing a cylindrical vertical shaft through a centrifugal model experiment. One quadrant of the axisymmetric vertical shaft and the ground were modeled, and ground excavation was simulated by shrinking the vertical shaft. The deformation occurring on the entire ground during the excavation was continuously evaluated through digital image analysis. The digital image analysis evaluated complex ground deformation which varied with wall displacement, distance from the wall, and ground depth. When the ground deformation data accumulate through the method used in this study, they can be used for developing shaft wall models in future for analyzing the earth pressure acting on them.

Mid-latitude Geomagnetic Field Analysis Using BOH Magnetometer: Preliminary Results

  • Hwang, Jun-Ga;Choi, Kyu-Cheol;Lee, Jae-Jin;Park, Young-Deuk;Ha, Dong-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권3호
    • /
    • pp.173-181
    • /
    • 2011
  • Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Mt. Bohyun Observatory to measure the Earth's magnetic field variations in South Korea. We, in 2007, installed a fluxgate magnetometer (RFP-523C) to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we provide the preliminary and the first statistical analysis using the BOH magnetometer installed at Mt. Bohyun Observatory. By superposed analysis, we find that daily variations of H, D, and Z shows similar tendency, that is, about 30 minutes before the meridian (11:28) a minimum appears and the time after about 3 hours and 30 minutes (15:28) a maximum appears. Also, a quiet interval start time (19:06) is near the sunset time, and a quiet interval end time (06:40) is near the sunrise time. From the sunset to the sunrise, the value of H has a nearly constant interval, that is, the sun affects the changes in H values. Seasonal variations show similar dependences to the sun. Local time variations show that noon region has the biggest variations and midnight region has the smallest variations. We compare the correlations between geomagnetic variations and activity indices as we expect the geomagnetic variation would contain the effects of geomagnetic activity variations. As a result, the correlation coefficient between H and Dst is the highest (r = 0.947), and other AL, AE, AU index and showed a high correlation. Therefore, the effects of geomagnetic storms and geomagnetic substorms might contribute to the geomagnetic changes significantly.

우주위험 대비를 위한 R&D 대응전략 연구 (A Study on Developing R&D Response Strategy to prepare Hazardous Space Situation)

  • 김시은;조성기;최은정;홍정유
    • 한국방재안전학회논문집
    • /
    • 제9권1호
    • /
    • pp.25-32
    • /
    • 2016
  • 기술의 개발은 인류의 활동영역을 넓히고, 기존에 대응하지 못했던 재난 상황에의 대응을 가능케 한다. 한편, 인류의 우주개발 활동은 새로운 종류의 재난인 우주물체에 의한 위험을 인식하게 하였다. 지난 '13년 러시아 첼야빈스크에 추락하여 1천 5백여 명의 인명피해를 낸 소행성처럼 과거에는 혜성 등 자연우주물체만이 위험요소에 해당하였다면, 오늘날에는 '87년 구소련의 원자력 핵전지 탑재 위성 추락, '12년 러시아의 포보스-그룬트 위성 추락 등 인공우주물체의 추락마저도 인류가 적극적으로 대처해야 할 위험요인이 된 것이다. 이에 정부에서는 국가차원의 대비책을 마련하고자 '14년에 우주위험대비기본계획을 확정하여 우주위험 예 경보 및 감시 분석 능력 등에 대한 목표를 제시한 바 있다. 본 연구에서는 우주위험을 대비하기 위해 개발해야 하는 기술의 중요성 및 시급성을 도출하기 위하여 관련 전문가를 대상으로 AHP 설문조사를 실시하였으며, 이의 결과를 근거로 우주위험감시기술개발 추진을 위한 정책전략을 제시하고자 한다.

폼제에 의해 개선된 흙의 물성 도출을 위한 실내 가압 베인 전단시험 및 개별요소법의 적용 (Application of Laboratory Pressurized Vane Shear Test and Discrete Element Method for Determination of Foam-conditioned Soil Properties)

  • 강태호;이효범;최항석;최순욱;장수호;이철호
    • 한국지반신소재학회논문집
    • /
    • 제19권4호
    • /
    • pp.65-74
    • /
    • 2020
  • 토압식(EPB, earth pressure balance) 쉴드 TBM 공법에서 첨가제 주입을 통해 굴착한 흙을 개량하는 쏘일 컨디셔닝(soil conditioning) 기법의 적용은 TBM의 굴진성능을 향상시키는데 필수적이다. 따라서 TBM 장비의 굴진 성능을 모사하는 수치해석 모델에서도 쏘일 컨디셔닝을 적용하는 것은 중요하나, 이를 해석적으로 모사하는 기법에 대한 연구는 현재까지 부족하다. 따라서 본 연구에서는 컨디셔닝 된 흙의 특성을 파악하기 위해 실내 가압 베인시험 장치를 고안하였다. 고안된 장치를 통해 폼에 의해 컨디셔닝 된 흙에 대하여 전단속도를 달리하며 시험을 수행하였으며, 시험은 개별요소법(DEM, discrete element method)을 통해 모델링 되었다. 시험결과와 해석결과의 비교를 통해 개별요소법에서의 입자 접촉조건을 결정하였으며, 이는 개별요소법을 사용한 TBM 굴진해석 모델에서 쏘일 컨디셔닝을 재현할 때 가압 베인시험과 개별요소법 모델의 적용 가능성을 보여준다.

시계열 환경변수 분포도 작성 및 불확실성 모델링: 미세먼지(PM10) 농도 분포도 작성 사례연구 (Time-series Mapping and Uncertainty Modeling of Environmental Variables: A Case Study of PM10 Concentration Mapping)

  • 박노욱
    • 한국지구과학회지
    • /
    • 제32권3호
    • /
    • pp.249-264
    • /
    • 2011
  • 이 논문에서는 환경변수의 시계열 분포도 작성과 불확실성 모델링을 위해 시공간영역으로 확장된 다중 가우시안 크리깅을 제안하였다. 다중 가우시안 틀 안에서, 우선 정규점수변환된 환경변수를 결정론적 경향 성분과 확률론적 잔차 성분으로 분해하였다. 그리고 시간 경향 모델 계수의 내삽을 통해 경향 성분의 시계열 공간 분포도를 작성하였다. 정상성 잔차 성분의 시공간 상관 구조는 곱-합 시공간 베리오그램 모델을 이용하여 정량화하였고, 이 베리오그램 모델과 시공간 크리깅을 이용하여 국소적 누적 확률분포함수를 모델링하였다. 이 국소적 누적 확률분포함수로부터 평균값과 조건부 분산을 계산하여 공간분포도 작성과 불확실성 분석에 각각 이용하였다. 제안 기법의 적용성 평가를 위해 인천광역시에서 3년간 13개 관측소에서 측정된 월 평균 미세먼지($PM_{10}$) 농도 자료를 이용한 시계열 분포도 작성 사례 연구를 수행하였다. 사례연구 결과, 제안 기법을 통해 기존 공간 정규 크리깅에 비해 작은 편향과 높은 예측 능력을 가진 시계열 미세먼지($PM_{10}$) 농도 분포도 작성이 가능함을 확인할 수 있었다. 또한 조건부 분산과 특정 농도값을 초과할 확률값들은 해석을 위한 유용한 보조 정보를 제공하였다.

3U 큐브위성 표준 플랫폼에 기반한 한누리 5호 개발 및 검증 (KAUSAT-5 Development and Verification based on 3U Cubesat Standard Platform)

  • 송수아;이수연;김홍래;장영근
    • 한국항공우주학회지
    • /
    • 제45권8호
    • /
    • pp.686-696
    • /
    • 2017
  • 본 연구에서는 3U 큐브위성의 표준 플랫폼을 기반으로 한누리 5호 위성을 개발하고 이를 검증하였다. 표준 플랫폼의 기계시스템 설계에서는 초소형 부품 및 서브시스템 기능/성능을 초소형 PCB에 집적 및 소형화하도록 하고, 다양한 탑재체를 수용하도록 전기적 능력을 극대화한다. 한누리 5호는 지구저궤도(LEO)에서 운용하는 3U 크기의 큐브위성으로 적외선 카메라를 이용한 지구관측임무와 가이거뮬러 튜브로 우주방사선 측정을 하는 과학임무를 수행한다. 또한, 자체 개발한 소형 가변속제어모멘트자이로(VSCMG)와 퍼지로직 기반의 MPPT (Maximum Power Point Tracking) 등의 부품(장치)들에 대한 기술검증도 포함한다. 한누리 5호의 검증을 위해 한누리 5호 위성체계의 ETB 시험, 기능시험 및 인증(Qualification)과 인수(Acceptance) 수준의 환경시험을 수행하였고 이들 시험결과를 제시하였다.

Design of Regional Coverage Low Earth Orbit (LEO) Constellation with Optimal Inclination

  • Shin, Jinyoung;Park, Sang-Young;Son, Jihae;Song, Sung-Chan
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권4호
    • /
    • pp.217-227
    • /
    • 2021
  • In this study, we describe an analytical process for designing a low Earth orbit constellation for discontinuous regional coverage, to be used for a surveillance and reconnaissance space mission. The objective of this study was to configure a satellite constellation that targeted multiple areas near the Korean Peninsula. The constellation design forms part of a discontinuous regional coverage problem with a minimum revisit time. We first introduced an optimal inclination search algorithm to calculate the orbital inclination that maximizes the geometrical coverage of single or multiple ground targets. The common ground track (CGT) constellation pattern with a repeating period of one nodal day was then used to construct the rest of the orbital elements of the constellation. Combining these results, we present an analytical design process that users can directly apply to their own situation. For Seoul, for example, 39.0° was determined as the optimal orbital inclination, and the maximum and average revisit times were 58.1 min and 27.9 min for a 20-satellite constellation, and 42.5 min and 19.7 min for a 30-satellite CGT constellation, respectively. This study also compares the revisit times of the proposed method with those of a traditional Walker-Delta constellation under three inclination conditions: optimal inclination, restricted inclination by launch trajectories from the Korean Peninsula, and inclination for the sun-synchronous orbit. A comparison showed that the CGT constellation had the shortest revisit times with a non-optimal inclination condition. The results of this analysis can serve as a reference for determining the appropriate constellation pattern for a given inclination condition.

영공(領空)과 우주공간(宇宙空間)의 한계(限界)에 관한 법적(法的) 고찰(考察) ("Legal Study on Boundary between Airspace and Outer Space")

  • 최완식
    • 항공우주정책ㆍ법학회지
    • /
    • 제2권
    • /
    • pp.31-67
    • /
    • 1990
  • One of the first issues which arose in the evolution of air law was the determination of the vertical limits of airspace over private property. In 1959 the UN in its Ad Hoc Committee on the Peaceful Uses of Outer Space, started to give attention to the question of the meaning of the term "outer space". Discussions in the United Nations regarding the delimitation issue were often divided between those in favour of a functional approach ("functionalists"), and those seeking the delineation of a boundary ("spatialists"). The functionalists, backed initially by both major space powers, which viewed any boundary as possibly restricting their access to space(Whether for peaceful or military purposes), won the first rounds, starting with the 1959 Report of the Ad Hoc Committee on the Peaceful Uses of Outer Space which did not consider that the topic called for priority consideration. In 1966, however, the spatialists, were able to place the issue on the agenda of the Outer Sapce Committee pursuant to Resolution 2222 (xxx1). However, the spatialists were not able to present a common position since there existed a variety of propositions for delineation of a boundary. Over the years, the funtionalists have seemed to be losing ground. As the element of location is a decisive factor for the choice of the legal regime to be applied, a purely functional approach to the regulation of activities in the space above the Earth does not offer a solution. It is therefore to be welcomed that there is clear evidence of a growing recognition of the defect inherent to such an approach and that a spatial approach to the problem is gaining support both by a growing number of States as well as by publicists. The search for a solution of the problem of demarcating the two different legal regimes governing the space above the Earth has undoubtedly been facilitated, and a number of countries, among them Argentina, Belgium, France, Italy and Mexico have already advocated the acceptance of the lower boundary of outer space at a height of 100km. The adoption of the principle of sovereignty at that height does not mean that States would not be allowed to take protective measures against space activities above that height which constitute a threat to their security. A parallel can be drawn with the defence of the State's security on the high seas. Measures taken by States in their own protection on the high seas outside the territorial waters-provided that they are proportionate to the danger-are not considered to infringe the principle of international law. The most important issue in this context relates to the problem of a right of passage for space craft through foreign air space in order to reach outer space. In the reports to former ILA Conferences an explanation was given of the reasons why no customary rule of freedom of passage for aircraft through foreign territorial air space could as yet be said to exist. It was suggested, however, that though the essential elements for the creation of a rule of customary international law allowing such passage were still lacking, developments apperaed to point to a steady growth of a feeling of necessity for such a rule. A definite treaty solution of the demarcation problem would require further study which should be carried out by the UN Outer Space Committee in close co-operation with other interested international organizations, including ICAO. If a limit between air space and outer space were established, air space would automatically come under the regime of the Chicago Convention alone. The use of the word "recognize" in Art. I of chicago convention is an acknowledgement of sovereignty over airspace existing as a general principle of law, the binding force of which exists independently of the Convention. Further it is important to note that the Aricle recognizes this sovereignty, as existing for every state, holding it immaterial whether the state is or is not a contracting state. The functional criteria having been created by reference to either the nature of activity or the nature of the space object, the next hurdle would be to provide methods of verification. With regard to the question of international verification the establishment of an International Satelite Monitoring Agency is required. The path towards the successful delimitation of outer space from territorial space is doubtless narrow and stony but the establishment of a precise legal framework, consonant with the basic principles of international law, for the future activities of states in outer space will, it is still believed, remove a source of potentially dangerous conflicts between states, and furthermore afford some safeguard of the rights and interests of non-space powers which otherwise are likely to be eroded by incipient customs based on at present almost complete freedom of action of the space powers.

  • PDF

Global MHD Simulation of a Prolonged Steady Weak Southward Interplanetary Magnetic Field Condition

  • Park, Kyung Sun;Lee, Dae-Young;Kim, Khan-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권2호
    • /
    • pp.77-84
    • /
    • 2020
  • We performed high-resolution three-dimensional global magnetohydrodynamic (MHD) simulations to study the interaction between the Earth's magnetosphere and a prolonged steady southward interplanetary magnetic field (IMF) (Bz = -2nT) and slow solar wind. The simulation results show that dayside magnetic reconnection continuously occurs at the subsolar region where the magnetosheath magnetic field is antiparallel to the geomagnetic field. The plasmoid developed on closed plasma sheet field lines. We found that the vortex was generated at the magnetic equator such as (X, Y) = (7.6, 8.9) RE due to the viscous-like interaction, which was strengthened by dayside reconnection. The magnetic field and plasma properties clearly showed quasiperiodic variations with a period of 8-10 min across the vortex. Additionally, double twin parallel vorticity in the polar region was clearly seen. The peak value of the cross-polar cap potential fluctuated between 17 and 20 kV during the tail reconnection.

Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

  • Park, Yoon-Kyung;Kwak, Young-Sil;Ahn, Byung-Ho;Park, Young-Deuk;Cho, Il-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.319-327
    • /
    • 2010
  • We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002) than low solar activity (2006-2008). It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF) Bs (IMF Bz <0) component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.