• 제목/요약/키워드: earth and space

검색결과 1,800건 처리시간 0.036초

'우주와 지구' 분야에서 초등 예비교사들의 SSI 프로그램 수업 적용 효과 (The Effects on SSI program of elementary pre-service teachers in 'The Universe and the Earth')

  • 이용섭;김순식
    • 대한지구과학교육학회지
    • /
    • 제7권3호
    • /
    • pp.338-346
    • /
    • 2014
  • In this study, find out of recognition of the effect of science, society and ethical aspects on natural disasters and understanding degree of knowledge applying for SSI class aimed at elementary pre-service teachers by developing SSI training program of the 'Earth and Space' field. Also, after SSI class application we examined the change perceptions of elementary pre-service teachers. SSI training program was that elementary pre-service teachers participated in the SSI class of a variety of subjects in the field of 'Earth and Space' and directly joined in the decision-making process and reflectional discussion with colleagues as conducted in this class reflective discussion with the pre-primary teachers pre-service teachers. Elementary pre-service teachers were understanding of the nature of the science and to understand in more depth about the SSI class characteristics. This study, second grade 115 people who was taking 'science and teaching materials' course in B National University of Education at B city participated. In order to apply for SSI class, one semester based on 15 weeks until seven weeks were science and teaching materials and based on the nature of science, after 8 weeks we set the theme of the contents related to the Earth and space and give lesson applied for SSI. During 8 weeks, test subjects 4 classes were taking 50 minutes a week 100 minutes. First time has theoretical lessons in topics related to the 'Earth and space' and on the second week, each classes participate in the decision-making processes respectivly by dicussing and debating on the first week's topic as regarding social and moral aspects of it. We obtained the following results. First, elementary pre-service teachers were acquiring the results of 67% in the knowledge aspects of the 'Earth and space'. This result was determined that most of the elementary pre-service teachers were liberal arts in high school. Second, while participating in the SSI class, elementary pre-service teachers were concretely aware of the nature of SSI and the characteristics of the class. Third, the elementary pre-service teacher are thaught that introduction education courses about 'Earth and space' are needed but most of the students responded that this would require a lot of effort of teachers. This was derived from not familiar class form that did not fulfill in the science teaching methods until now.

ANALYSIS OF THE EFFECT OF UTI-UTC TO HIGH PRECISION ORBIT PROPAGATION

  • Shin, Dong-Seok;Kwak, Sung-Hee;Kim, Tag-Gon
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.159-166
    • /
    • 1999
  • As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  • PDF

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission

  • Kim, Pureum;Park, Sang-Young;Cho, Sungki;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권2호
    • /
    • pp.105-117
    • /
    • 2021
  • In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.

'우주 위험' 관련 뉴스 기사의 텍스트 마이닝 분석 연구 (Text Mining Analysis of News Articles Related to 'Space Hazard')

  • 조훈;손정주
    • 한국지구과학회지
    • /
    • 제43권1호
    • /
    • pp.224-235
    • /
    • 2022
  • 본 연구는 지난 12년간의 우주위험 관련 언론기사의 토픽모델링 분석을 통해 우주위험별 언론 보도 현황을 알아보기 위한 목적으로 수행되었다. 빅카인즈(BIGKinds)의 뉴스 플랫폼에서 2010년부터 2021년까지의 태양폭풍, 인공우주물체, 자연우주물체에 대한 우주위험 기사를 각각 1200여건 이상 수집하였으며, 키워드 분석, 잠재적 디리클레 할당모형(LDA) 분석을 수행하였다. 그 결과 태양폭풍 관련 기사는 3개의 토픽인 태양폭발이 인공위성에 미치는 영향, 우주전파센터를 중심으로 태양폭발이 우리나라 전파 통신에 미치는 영향, 항공종사자와 우주방사선의 관계로 요약되었다. 인공우주물체 관련 기사의 경우 3개의 토픽으로 인공위성과 우주정거장이 우주쓰레기로부터 위협을 받거나 그 자체가 우주쓰레기가 될 수 있다는 토픽, 영화를 통한 우주쓰레기와 인류의 관계에 대한 토픽, 우주쓰레기 추적·감시 및 처리를 위한 우주강국들의 노력이라는 토픽으로 요약되었다. 자연우주물체 관련 기사는 2개의 토픽으로 국제 우주기관의 근지구소행성에 대한 추적·감시와 충돌 대책과 소행성과 혜성 충돌을 중심으로 공룡과 포유류의 진화 및 멸종 원인으로 요약되었다. 이로부터 2010년부터 현재까지 국내 언론은 우주위험을 사회, 문화 등 다양한 영역에서 총 8개의 주제로 대중들에게 그 위험성과 경각심을 전하는 역할을 하고 있음을 확인하였으며, 이러한 결과를 기반으로 우주위험에 대한 교육방법과 교육정책의 필요성을 제언하였다.

Apophis Rendezvous Mission: I. Science Goals

  • Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Jeong, Minsup;Choi, Jin;JeongAhn, Youngmin;Yang, Hongu;Baek, Seul-Min;Lee, Hee-Jae;Ishiguro, Masateru
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.43.4-44
    • /
    • 2021
  • 99942 Apophis is an Sq-type Aten group Near-Earth Asteroid (NEA) with an estimated size of 370 m. It will approach the Earth to come within the geostationary orbit during the upcoming encounter on April 13, 2029 to offer a unique chance to study its 1) global properties, 2) surface arrangements, and 3) their detectable changes expected to happen, in sub-meter scale. What measurable scientific goals for the asteroid in this "once a millennium" event could transform our knowledge of planetary science and defense? The Apophis rendezvous mission aims to understand the characteristics of the small solar system body's nature. It also prepares for potential threats from natural objects by measuring in-situ surface, shape, rotation, and orbit changes expected to occur when the target asteroid passes close to the Earth in 2029. We will present an overview of the mission scheduled to be launched from late 2026 to early 2027 and introduce scientific objectives.

  • PDF

Long-Term Science Goals with In Situ Observations at the Sun-Earth Lagrange Point L4

  • Dae-Young Lee;Rok-Soon Kim;Kyung-Eun Choi;Jungjoon Seough;Junga Hwang;Dooyoung Choi;Ji-Hyeon Yoo;Seunguk Lee;Sung Jun Noh;Jongho Seon;Kyung-Suk Cho;Kwangsun Ryu;Khan-Hyuk Kim;Jong-Dae Sohn;Jae-Young Kwak;Peter H. Yoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제41권1호
    • /
    • pp.1-15
    • /
    • 2024
  • The Korean heliospheric community, led by the Korea Astronomy and Space Science Institute (KASI), is currently assessing the viability of deploying a spacecraft at the Sun-Earth Lagrange Point L4 in collaboration with National Aeronautics and Space Administration (NASA). The aim of this mission is to utilize a combination of remote sensing and in situ instruments for comprehensive observations, complementing the capabilities of the L1 and L5 observatories. The paper outlines longterm scientific objectives, underscoring the significance of multi-point in-situ observations to better understand critical heliospheric phenomena. These include coronal mass ejections, magnetic flux ropes, heliospheric current sheets, kinetic waves and instabilities, suprathermal electrons and solar energetic particle events, as well as remote detection of solar radiation phenomena. Furthermore, the mission's significance in advancing space weather prediction and space radiation exposure assessment models through the integration of L4 observations is discussed. This article is concluded with an emphasis on the potential of L4 observations to propel advancements in heliospheric science.

Stability of a magnetic structure producing an M6.5 flare in the active region 12371

  • Kang, Jihye;Inoue, Satoshi;Kusano, Kanya;Park, Sung-Hong;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.83.2-83.2
    • /
    • 2019
  • We study the stability of the magnetic structure in active region (AR) 12371 producing an M6.5 flare on June 22 2015. We first perform a nonlinear force-free fields (NLFFFs) extrapolation to derive three-dimensional (3D) magnetic fields based on time series of observed photospheric magnetic fields. The NLFFFs well describe an observed sigmoidal structure with the shape of a double arc magnetic configuration. Next, we examine three possible instabilities (kink, torus, and double arc) to investigate how the M6.5 flare is triggered in the double arc loops. Consequently, the double arc loops are stable against kink and torus instabilities, but possibly unstable against the double arc instability before the flare occurrence. Finally, we discuss a probable scenario for the M6.5 flare.

  • PDF

합성곱 신경망을 이용한 구글 어스에서의 녹지 비율 측정 (Measurements of Green Space Ratio in Google Earth using Convolutional Neural Network)

  • 윤여수;김광백;박현준
    • 한국정보통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.349-354
    • /
    • 2020
  • 녹지 영역의 확충을 위한 사전 조사에는 많은 비용과 시간이 필요하다는 문제가 발생한다. 본 논문에서는 구글 어스를 이용한 합성곱 신경망 기반의 녹지 분류를 통해 특정 지역의 녹지 비율을 측정함으로써 문제를 해결한다. 먼저 제안하는 방법은 구글 어스에서 여러 지역 영상을 수집하고 합성곱 신경망을 이용하여 학습한다. 제안하는 방법은 특정 지역의 녹지 비율을 측정하기 위해서 영상을 재귀적으로 분할하고 학습된 모델을 이용하여 녹지 여부를 판단한 뒤, 녹지로 판단된 영역 면적을 이용하여 녹지 비율을 계산한다. 실험 결과 제안하는 방법은 다양한 지역의 녹지 비율 측정에 높은 성능을 보여주는 것을 확인할 수 있었다.

Disk-averaged Spectra Simulation of Earth-like Exoplanets with Ray-tracing Method

  • 류동옥;김석환
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.76.2-76.2
    • /
    • 2012
  • The understanding spectral characterization of possible earth-like extra solar planets has generated wide interested in astronomy and space science. The technical central issue in observation of exoplanet is deconvolution of the temporally and disk-averaged spectra of the exoplanets. The earth model based on atmospheric radiative transfer method has been studied in recent years for solutions of characterization of earthlike exoplanet. In this study, we report on the current progress of the new method of 3D earth model as a habitable exoplanet. The computational model has 3 components 1) the sun model, 2) an integrated earth BRDF (Bi-directional Reflectance Distribution Function) model (Atmosphere, Land and Ocean) and 3) instrument model combined in ray tracing computation. The ray characteristics such as radiative power and direction are altered as they experience reflection, refraction, transmission, absorption and scattering from encountering with each all of optical surfaces. The Land BRDF characteristics are defined by the semi-empirical "parametric-kernel-method" from POLDER missions from CNES. The ocean BRDF is defined for sea-ice cap structure and for the sea water optical model, considering sun-glint scattering. The input cloud-free atmosphere model consists of 1 layers with vertical profiles of absorption and aerosol scattering combined Rayleigh scattering and its input characteristics using the NEWS product in NASA data and spectral SMARTS from NREL and 6SV from Vermote E. The trial simulation runs result in phase dependent disk-averaged spectra and light-curves of a virtual exoplanet using 3D earth model.

  • PDF

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2004년도 대한지구물리학회.한국지구물리탐사학회 공동학술대회 초록집
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF