• Title/Summary/Keyword: earth anchor

Search Result 93, Processing Time 0.02 seconds

Case Study of Ground Disturbance Characteristic due to Drilling Machine in Adjacent Deep Excavation (근접 깊은 굴착에서 천공장비에 의한 지반교란 특성 사례 연구)

  • 김성욱;한병원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.77-84
    • /
    • 2003
  • Deep excavations in the urban areas have been frequently going on in large scale. Soil-nailing and Earth-anchor supporting methods are generally used in deep excavation. These construction methods cause ground disturbances during drilling process, and damages of adjacent structures and ground due to the differential settlement throughout construction period, and unexpected behaviors of supporting system according to the characteristics of drilling machine and ground condition. This article introduces two actual examples of adjacent deep excavation for the construction of university buildings in granitic Seoul area. The important results of construction and measurements obtained using Crawler drilling machine for Soil-nailing and Earth-anchor supporting methods are summarized. And some suggestions are given to improve and develop the technique of design and construction in the deep excavation projects having similar ground condition and supporting method.

  • PDF

Lateral Earth Pressures and Displacements through Full Scaled Lateral Loading Test of Concrete Electric Pole Embedded in Ground (지중에 근입된 콘크리트전주의 실물 수평재하실험에 의한 수평토압과 변위특성)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.43-51
    • /
    • 2011
  • Many electric poles in the softground have been collapsed due to external load. In this study, 10 types of tests were performed with variation of location, numbers and depths of anchor blocks as well as depth of poles to find horizontal earth pressure through full scale pull-out tests. The horizontal earth pressure increased with embedded depth of electric pole, and earth pressure of lower passive zone decreased. The deeper of anchor block, earth pressure of passive zone becomes less. lateral displacements showed differences depending on location, numbers and depth of poles. The bending is generated in the upper part at the initial load, but it moved to central part as load increased. The maximum horizontal displacement decreased to 1/1.6 at -0.5m depth of anchor block and 1.3m additional laying depth of poles into ground.

A Study on the Behaviour Mechanism of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1240-1249
    • /
    • 2008
  • Jacket anchor was developed to increase the pullout resistance of general ground anchor in soft ground, and the mechanism of pullout resistance of jacket anchor was analyzed. Also, the ultimate bond stress of jacket anchor was estimated by ultimate resistance which is determined by field tests. Grout milk was injected into the jacket to make grout bulb of jacket anchor. The formation of grout bulb of jacket anchor increases the diameter of grout bulb, ground strength and confining pressure between anchor grout and soil. From the twelve field test results, it was observed that the pullout resistance of jacket anchor is 15.38~295.02%(average 83.53%) greater than that of general ground anchor, and plastic deformation of jacket anchor is 20.78~1,496.45%(average 288.78%) smaller than that of general ground anchor at the same load cycle. Especially, it was investigated that the increase of ultimate resistance over 200% and the reduction of plastic deformation over 600% was obtained in gravel layer. It means that the jacket anchor is superior to the general ground anchor in gravel layer. Finally, the ultimate bond stress was proposed to design jacket anchor.

  • PDF

Pullout resistance of concrete anchor block embedded in cohesionless soil

  • Khan, Abdul J.;Mostofa, Golam;Jadid, Rowshon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.675-688
    • /
    • 2017
  • The anchor block is a specially designed concrete member intended to withstand pullout or thrust forces from backfill material of an internally stabilized anchored earth retaining wall by passive resistance of soil in front of the block. This study presents small-scale laboratory experimental works to investigate the pullout capacity of a concrete anchor block embedded in air dry sand and located at different distances from yielding boundary wall. The experimental setup consists of a large tank made of fiberglass sheets and steel framing system. A series of tests was carried out in the tank to investigate the load-displacement behavior of anchor block. Experimental results are then compared with the theoretical approaches suggested by different researchers and codes. The appropriate placement of an anchor block and the passive resistance coefficient, which is multiplied by the passive resistance in front of the anchor block to obtain the pullout capacity of the anchor, were also studied.

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor

  • Zhu, Hong-Hu;Mei, Guo-Xiong;Xu, Min;Liu, Yi;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.165-181
    • /
    • 2014
  • In the past decade, different types of underreamed ground anchors have been developed for substructures requiring uplift resistance. This article introduces a new type of umbrella-shaped anchor. The uplift behavior of this ground anchor in clay is studied through a series of laboratory and field uplift tests. The test results show that the umbrella-shaped anchor has higher uplift capacity than conventional anchors. The failure mode of the umbrella-shaped anchor in a large embedment depth can be characterized by an arc failure surface and the dimension of the plastic zone depends on the anchor diameter. The anchor diameter and embedment depth have significant influence on the uplift behavior. A finite element model is established to simulate the pullout of the ground anchor. A parametric study using this model is conducted to study the effects of the elastic modulus, cohesion, and friction angle of soils on the load-displacement relationship of the ground anchor. It is found that the larger the elastic modulus and the shear strength parameters, the higher the uplift capacity of the ground anchor. It is suggested that in engineering design, the soil with stiffer modulus and higher shear strength should be selected as the bearing stratum of this type of anchor.

Structural Analysis of Arch Anchor Brackets in Ground Anchor Construction (그라운드 앵커공법용 아치형 앵커브라켓의 구조해석)

  • Kim, Jae-Yeol;Kim, Young-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • When we excavate an underground to build basement, the ground anchors are needed to prevent collapse of neighboring ground, subsidence and movement. Ground anchor construction required shore sheet piles, wales and struts as to maintain secure excavation. Existing box-type bracket using head part of ground anchor can not be possibly adjustable to the boring angle because the brackets are manufactured with unified angle in a factory. Also, box-type brackets have imperfection and instability caused by inequable force. In this study, a new bracket system is proposed. The bracket's side plate is reinforced and the angle of boring can be controlled. To investigate the structural performance of presented brackets, FEM analysis has been performed by using ANSYS commercial program. As a result, this bracket shows sufficient stability for all angle case and the strength is increased about 24% than existing bracket.

Evaluation on Stability of Reinforced Earth Wall using Geosynthetic Strip with Rounded Band Anchor (띠형 섬유보강재가 적용된 블록식 보강토옹벽의 안정성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.43-51
    • /
    • 2012
  • This paper describes the stability evaluation of reinforced earth wall using geosynthetic strip based on field test. The wall facing, which is applied in field, is able to present excellent scenery, and the reinforcement has improvement effect of pullout resistance based on rounded band anchor. The measurement is conducted according to construction elapsed time of structure for earth pressure, horizontal displacement of wall facing and reinforcement strain in field test. The evaluation results show that the measured earth pressure is less than theoretical earth pressure due to dispersion effect of earth pressure by geosynthetic strip. The horizontal displacement of wall facing is also satisfied a empirical criteria. The measured strain of reinforcement had nearly no effect on stability of the reinforced earth wall. Therefore, the geosynthetic strip with rounded band anchor can be applied in the reinforced earth wall, and the reinforced earth wall with geosynthetic strip can be commonly used in field because it has a structural stability.

A Case Study for Exploring Topic-Specific PCK Progression on Elementary Teachers' Instruction of 'Earth Revolution' (지구 공전에 대한 초등 교사들의 주제-특이적 PCK 발달과정 탐색을 위한 사례 연구)

  • Lee, Jeong-A;Lee, Kiyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.36 no.4
    • /
    • pp.405-427
    • /
    • 2017
  • This study aims to describe various teaching cases about 'earth revolution' in terms of PCK; knowledge of curriculum, knowledge of teaching strategies and knowledge of assessment. Based on these various cases we suggested PCK progressions about 'earth revolution'. For these, we recorded 'solar system and star' classes of nine elementary school teachers' in Kangwon, Gyeonggi, Gwangju, and Seoul. We adopted Lee & Lee (2016)'s topic-specific PCK framework to analyze the classes. As results, we suggested topic-specific PCK progression about 'earth revolution'. The results showed the upper anchor of the earth revolution class were exploring the reason of the change of constellation, finding the tendency of constellation change. These teachings were carried by the teachers' adaptive strategies. The upper anchor of the assessment was monitoring students' understanding during the whole class. The PCK progression about 'earth revolution' could help the teachers plan the earth revolution class, and reflect their own teachings.