• Title/Summary/Keyword: early-age concrete

Search Result 584, Processing Time 0.027 seconds

Basic Creep Model by Considering Autogenous Shrinkage

  • Lee, Yun;Kim, Jin-Keun;Kim, Min-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1071-1076
    • /
    • 2003
  • Basic creep of concrete during very early ages is an important factor on the behavior of young concrete and a great deal of research has been executed. However, in recent studies, it was revealed that the basic creep measured by sealed concrete was inaccurate, especially for high strength concrete because of autogenous shrinkage at early age. This paper presents the results from experimental study that investigate to explore the effect of autogenous shrinkage in basic creep. More specifically, four different mix proportions were casted and the primary variables were water-cement ratios. Through this research, it was found that the differences between apparent specific creep and real specific creep were remarkable in low water-cement ratio at early age. Therefore, it is recommended to modify existing creep model by considering autogenous shrinkage

  • PDF

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.

Effect of Temperature on Joint Movement of JPCP at Its Early Age (재령초기 콘크리트포장 줄눈거동에 미치는 온도의 영향)

  • Choi, Ki-Hyo;Jeong, Jin-Hoon;Chun, Sung-Han;Park, Moon-Gil
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.340-343
    • /
    • 2007
  • The temperature variation of concrete pavement at early-age significantly affects the initiation and movement of joint cracks. For this analysis, we have built on IIA(Incheon International Airport) concrete pavement construction zone, and we measured the temperature and movement of the concrete slabs by using thermocouples, moisture sensors, V/W strain gages, and Demac discs. The analysis results showed that pavement's temperature significantly affected the joint movement. The widths of the joint cracks increased at evening and early in the morning when the temperature dropped but, those decreased in the day time when the temperature rose because of the effect of thermal expansion of the concrete slabs. The movements of the joints where the cracks never developed showed opposite trend to the cracked joints.

  • PDF

Influence of Chemical Admixture on the Strength Development of Concrete at Early Age (콘크리트의 초기 강도발현에 미치는 혼화제의 영향)

  • 황인성;나운;이승훈;류현기;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.741-744
    • /
    • 2003
  • In this study, the influence of chemical admixture on early strength development of concrete is discussed. According to the results, fluidity with variation of kinds of chemical admixture is lower in the case of acceleration type than in the case of normal type. Setting time of naphthalene acceleration type is shortened by I hour, and that of melamine is nearly same, but that of polycarbonic acid is somewhat retarded in comparison with that of naphthalene normal type. Early compressive strength gains 5MPa in about 18hours regardless of the kinds of chemical admixture. But as time elapses, compressive strength is higher in order of polycarbonic acid, naphthalene and melamine type. The relativity between compressive strength and the rebound value of P-type schmidt hammer is also favorable at early age, and compressive strength of 5MPa is estimated at the rebound value of 22.

  • PDF

Investigation on Properties of Low Cement Concrete with Accelerator Type of Hydration (수화반응 촉진제 종류에 따른 저시멘트 콘크리트의 성능 검토)

  • Kim, Yong-Ro;Song, Young-Chan;Kim, Hyo-Rak;Jang, Se-Woong;Nam, Sang-Soo;Park, Jong-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.195-196
    • /
    • 2012
  • In this study, it was investigated early age strength generation of low cement concrete with type and addition ratio of hydration accelerator obtaining fundamental data for the application in construction field.

  • PDF

Evaluation of Thermal and Shrinkage Stresses in Hardening Concrete Considering Early-Age Creep Effect (초기재령 콘크리트의 크리프를 고려한 온도 및 수축응력 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.382-391
    • /
    • 2002
  • This study is devoted to the problems of thermal and shrinkage stresses in order to avoid cracking at early ages. The early-age damage induced by volume change has great influence on the long-term structural performance of the concrete structures such as its durability and serviceability To solve this complex problem, the computer programs for analysis of thermal and shrinkage stresses were developed. In these procedures, numerous material models are needed and the realistic numerical models have been developed and validated by comparison with relevant experimental results in order to solve practical problems. A framework has been established for formulation of material models and analysis with 3-D finite element method. After the analysis of the temperature, moisture and degree of hydration field in hardening concrete structure, the stress development is determined by incremental structural formulation derived from the principle of virtual work. In this study, the stress development is related to thermal and shrinkage deformation, and resulting stress relaxation due to the effect of early-age creep. From the experimental and numerical results it is found that the early-age creep p)ays important role in evaluating the accurate stress state. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and shrinkage stresses and to find measures for avoiding detrimental cracking of concrete structures at early ages.

RESEARCH TRENDS IN THE CELLULOSE REINFORCED FIBROUS CONCRETE IN USA

  • Soroushian, Parviz;Ravanbakhsh, Sizvosh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.3-23
    • /
    • 1997
  • The growth in fast-track construction and repair has prompted major efforts to develop high-early-strength concrete mix compositions. Such mixtures rely on the use of relatively high cement contents and accelerator dosages to increase the rate of strength development. The measures, however, seem to compromise the long-term performance of concrete in applications such as full-depth patches as evidenced by occasional premature deterioration of such patches. The hypothesis successfully validated in this research was that traditional methods of increasing the early-age strength of concrete, involving the use of high cement and accelerator contents, increase the moisture and thermal movements of concrete. Restraint of such movements in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduced microcracks and thus increase the permeability of concrete. This increase in permeability accelerates various processes of concrete deterioration, including freeze-thaw attack. Fiver reinforcement of concrete is an effective approach to the control of microcrack and crack development under tensile stresses. Fibers, however, have not been known of accelerating the process of strength gain in concrete. The recently developed specialty cellulose fibers, however, were found in this research to be highly effective in increasing the early-age strength of concrete. This provides a unique opportunity to increase the rate of strength gain in concrete without increasing moisture an thermal movements, which actually controlling the processes of microcracking and racking in concrete. Laboratory test results confirmed the desirable resistance of specialty cellulose fiber reinforced High-early-strength concrete to restrained shrinkage microcracking an cracking, and to different processes of deterioration under weathering effects.

  • PDF

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Freezing at Early Age (초기재령에서 동결을 받은 고로슬래그 콘크리트의 강도발현특성에 관한 실험적 연구)

  • Choi, Sung-Woo;Ban, Seong-Soo;Ryu, Deuk-Hyun;Choi, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2003
  • Recently, to consider financial and constructive aspect usage of Admixture such as Blast-Furnace Slag and Fly-Ash, are increased. Also the use of cold-weather-concrete is increased. Blast-Furnace Slag, a by-product of steel industry, have many advantage to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to frost damage for the cause of early age curing. The factors of this experience to give early frost damaged were Freezing temperature(-1, -10, $-15^{\circ}C$), Early curing age(0, 12, 24, 48hour), Freezing times(0, 12, 24, 48hour). According to this study, if early curing is carried out before haying frost damage, the strength of concrete used admixture, subjected to frost damage, is recovered. And that properties are considered, the effect of using admixture like blast-furnace-slag, is very high

Comparison of Temperature History of Concrete with the Combination of the Various Surface Curing Sheets at Hot Weather Condition (표면 양생시트 조합에 의한 서중콘크리트 표면온도 이력 비교)

  • Lee, Ju-Suck;Kim, Jong-Back;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.87-90
    • /
    • 2006
  • This study investigates the temperature history of slab mock-up specimens for hot weather concreting applying various surface insulating methods, in order to improve concrete quality at hot weather condition. Test showed that the use of insulating blanket or a bubble sheet on upper section of slab prevented from abrupt increase of temperature and vaporization of moisture during early curing at hot weather circumstance. In addition, it secured higher strength at early age. Therefore it is concluded that concrete construction insulating with the bubble sheet will reduce the plastic and drying shrinkage as well as improve strength at early age, thus securing concrete duality.

  • PDF

A Fundamental Study on the Correlationship between Hydration Heat and Autogenous Shrinkage of High Strength Concrete at an Early Age (초기재령 고강도콘크트의 수화발열과 자기수축 특성의 상관관계에 관한 기초적 연구)

  • Kim, Gyu-Yong;Lee, Eui-Bae;Koo, Kyung-Mo;Choi, Hyeong-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.593-600
    • /
    • 2008
  • In this study, to analyze the correlation between hydration heat and autogenous shrinkage of high strength concrete at an early age, hydration heating velocity and autogenous shrinking velocity as quantitative coefficients which represent the main properties of hydration heat and autogenous shrinkage were proposed. Two coefficients were calculated by statistical analysis and were equal with the regression coefficient. The complemented semi-adiabatic temperature rise test as test method to evaluate the hydration heat and autogenous shrinkage of concrete were proposed. In results of proposed test and analysis method, it was possible that early age properties of hydration heat and autogenous shrinkage of concrete were expressed numerically, and autogenous shrinkage was represented by equation with coefficients of hydration heat.