• Title/Summary/Keyword: early strength concrete

Search Result 912, Processing Time 0.028 seconds

Autogenous Shrinkage of VES-LMC considering Hydration-Heat (VES-LMC의 열 특성을 고려한 자기수축)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.73-80
    • /
    • 2005
  • Durability of concrete structures is seriously compromised by cracking at early-age concretes, particularly in high-strength or high-performance concrete structures. Since early-age cracking is influenced by various factors that affect the hydration process, early-age shrinkage and stress/strain development, the behavior at early-age is highly complex and no rational methodologies for its control have yet been established. Concrete structures often present volumetrical changes particularly due to thermal and moisture related shrinkages. Volumetric instability is detrimental to the performance and durability of concrete structures because structural elements are usually restrained. These restrained shrinkages develope tensile stresses which often results in cracking in combination with the low fracture resistance of concrete. Early-age defects in high-performance concrete due to thermal and autogenous deformation shorten the life cycle of concrete structures. Thus, it is necessary to examine the behavior of early-age concrete at the stages of design and construction. The purpose of this study was to propose a shrinkage models of VES-LMC (very-early strength latex-modified concrete) at early-age considering thermal deformation and autogenous shrinkage.

  • PDF

Influence of Chemical Admixtures on Flyahe Paste and Concrete (플라이애쉬 페이스트 및 콘크리트에 화학혼화제가 미치는 영향)

  • 이진용;최수홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.77-82
    • /
    • 1998
  • It was investigated to evaluate the characteristics of cement-flyash paste affected the replacement level, curing method and chemical admixtures. The strength of cement-flyash paste was lower than that of cement paste only and the differences increased with increasing the replacement level. However, in steam curing, the strength of cement-flyash pastes was improved and specially, the early strength was effectively increased. In order to improve the early strength, the use of $Na_2SO_4$ in cement-flyash paste increased the quality of concrete. In addition, the strength of concrete including 30% of fly ash has improved and obtained the highest strength compared to other concrete mix.

  • PDF

Early Strength Development Properties of Concrete using Early Strength Improvement Type Cement (조기강도 개선형 시멘트를 사용한 콘크리트의 조기강도 발현 특성)

  • Park, Kyu-Yeon;Kim, Yong-Ro;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2013
  • In this research, early strength development performance of early strength improvement type ordinary cement which is economically feasible early strength cement(Type III), improved early strength ordinary cement(Type I), was estimated to derive minimum curing temperature and proper water to cement ratio according to cement for early strength development through examination of fresh concrete properties and compressive strength according to water to cement ratio curing $10^{\circ}C$, $15^{\circ}C$ and $20^{\circ}C$ to suggest fundamental data for practical use of early strength concrete.

Water temperature effects on the early strength characteristics of antiwashout underwater concrete (수중온도가 수중불분리성 콘크리트의 초기상도에 미치는 영향에 관한 실험적 연구)

  • 이승훈;정재홍;안태송;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.324-329
    • /
    • 1998
  • Recently the use of the underwater concrete with the antiwashout admixture is increased considerably. When we intend to apply it to the field, we must consider the water temperature effect. In this study, we investigate the properties of setting time, early strength, hydration temperature history and core strength with the antiwashout underwater concrete in the water temperature 8$^{\circ}C$, 14$^{\circ}C$ and 22$^{\circ}C$ respectively. As a result of experiment, as the water temperature is decreasing, setting time is delayed twice of three times and early strength is lower from 10% to 50%. Therefore to compensate the decrease of the early strength, we used the accelerator and investigated the concrete properties.

  • PDF

Mock-up Test of Concrete Using AE Water Reducing Agent of Early-Strength Type in Construction Field (조기강도발현형 AE감수제를 사용한 콘크리트의 현장 Mock-up 실험)

  • 황인성;김기훈;김규동;이승훈;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper. applicability of high early strength type AE water reducing agent(HESAEWA) developed by the authors is discussed by applying Mock-up test. For fresh concrete properties, concrete using existing AE water reducing agent(EAEWRA) and HESAEW A meets the target slump and air content at jobsite. Setting time of concrete using HESAEWA is shorter than that using EAEWRA. Remarkable variance of bleeding and settlement is not observed with type of AE water reducing agent. For hardened concrete properties, use of HESAEW A results in higher strength development compared with that of EAEWRA at standard curing and in field curing condition. Reaching time to accomplish 5MPa of compressive strength. which is possible to remove side form. is taken using HESAEWA earlier than that of EAEWRA by 1day. Therefore, it is confirmed that use of HESAEWA can meet the requirements of general quality of concrete and achieve high early strength development as well as has a desirable field applicability.

  • PDF

An Experimental Study on the Early Compressive Strength Improvement of Cement Mortar Mixed with Blast Furnace Slag using Powdered Stimulants (분말형 자극제를 이용한 고로슬래그미분말 혼입 시멘트 모르타르의 조기 압축강도 향상에 관한 실험적 연구)

  • Lee, Kang Jin;Kim, Jin Hyoung;Park, Ki Bong;Lee, Han Seung
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.115-122
    • /
    • 2012
  • Based on previous research and existing literature, this study examines the development of admixture, which increases the early concrete strength (1 and 3 day) by mixing blast furnace slag cement and concrete stimulant. The research on early strength development of concrete is necessary in dealing with the drawbacks of slow early strength concrete on site and to shorten the construction time. The study confirmed that when a high alkaline mortar mixture is mixed with blast furnace slag, the early strength of admixture exceeds that of ordinary portland cement (OPC). The use of calcium chloride ($CaCl_2$) promotes hydration of cement at low temperature and show similar strength as the blast furnace slag admixture. Although calcium chloride seems economically advantageous, it causes steel corrosion and its use in concrete should be further studied in-depth.

Mechanical Properties of High-Early-Strength Concrete for Early Traffic Opening (조기교통개방 콘크리트의 강도특성)

  • Won, Jong-Pil;Kim, Hyun-Ho;Ahn, Tae-Song
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.123-130
    • /
    • 2001
  • This study was performed to enhance mechanical properties of high-early-strength concrete using regulated-set cement for early traffic opening with various mixtures. Restraint of moisture and thermal movements of concrete pavement in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduce microcracks and thus reduce the mechanical properties of concrete. Fiber reinforcement of concrete is an effective approch to the control of microcrack and crack development under tensile stresses. Three different types of regulated-set cement which recently have been used in Korea and two different types of fiber were adopted. Fibers were added and their mixtures are compared with plain high-early-strength concrete mixture. From the test results, fiber reinforced concrete was increased mechanical properties of high-early-strength concrete using regulated-set cement than the plain concrete.

  • PDF

A Study on the Compensation of Early Age Strength in Mortar and Concrete using Blast Furnace Slag Powder (슬래그 미분말을 사용한 모르타르 및 콘크리트의 초기강도 보상에 관한 연구)

  • 김성수;연영훈;이성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.559-562
    • /
    • 2000
  • This study is about the compensation of early age strength on mortar and concrete admixed with blast-furnace slag powder. For study, we have used fine powder of gypsum and kiln dust from cement factory. According to the test results, we have obtained proper mixing ratio of slag powder, gypsum and kiln dust for the compensation of early age strength on mortar and concrete property.

  • PDF

Evaluation of Early Compressive Strength of Concrete Using Early Strength Improvement Type Cement and Early Strength Activator (조기강도 개선형 시멘트 및 초기수화 촉진 혼화제를 사용한 콘크리트의 조기압축강도 발현특성 평가)

  • Park, Gyu-Yeon;Kim, Gyu-Yong;Choe, Gyoeng-Choel
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.322-328
    • /
    • 2014
  • In this study, revelation performance of concrete at early age according to types of cement, water reducing ratio of high performance superplasticizer and mixing of accelerator for early hydration was examined aiming for reduction of construction period of framework through securing strength at early age of concrete. It was observed that strength at early age, 5MPa in 12hours, 14MPa in 18hours, is secured by early strength improvement type cement and using promotion admixture for early hydration which are Sodium persulfate, Potassium hydroxide. Therefore cost reduction is expected to be possible in construction site by reducing construction period of frame work.

Determination of the Protecting Periods of Frost Damage at Early Age in Cold Weather Concreting (한중콘크리트의 초기 동해 방지를 위한 초기 양생기간의 산정)

  • 한천구;한민철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.47-55
    • /
    • 2000
  • Protections from the frost damage at early ages are one of the serious problems to be considered in cold weather concreting. Frost damage at early ages brings about the harmful influences on the concrete structures such as surface cracks and declination of strength development. Therefore, in this paper, protecting periods of frost damage at early ages according to the standard specifications provided in KCI(Korean Concrete Institute) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. W/B, kinds of cement and curing temperatures are selected as test parameters. According to the results, the estimation of strength development by logistic curve has a good agreement between calculated values and measured values. As W/B and compressive strength for protecting from frost damages at early ages increase, it is prolonged. It shows that the protecting periods of FAC(Fly Ash Cement) and BSC(Blast-furnace Slag Cement) concrete are longer than those of OPC(Ordinary Portland Cement) concrete. The protecting peridos from frost damage at early age by JASS are somewhat shorter than those by this paper.