• Title/Summary/Keyword: eRF1

검색결과 433건 처리시간 0.028초

RF 스퍼터링법에 의한 SCT 박막의 전압-전류 특성 (V-I Characteristics of SCT Thin Film by RF Sputtering Method)

  • 김진사;조춘남;신철기;최운식;김충혁;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제13권9호
    • /
    • pp.745-750
    • /
    • 2000
  • The (S $r_{0.85}$C $a_{0.15}$) Ti $O_3$(SCT) thin films are deposited on Pt-coated electrode (Pt/TiN/ $SiO_2$/Si) using RF sputtering method at various deposition temperature. The crystallinity of SCT thin films were increased with increase of deposition temperature in the temperature range of 200~500[$^{\circ}C$]. Also, the composition of SCT thin films were closed to stoichiometry (1.080~1.111 in A/B ratio). V-I characteristics of SCT thin films show the increasing leakage current with the increases of deposition temperature. The conduction mechanism of the SCT thin films observed in the temperature range of 25~100[$^{\circ}C$] can be divided into four regions with different mechanism by the increasing current. The region I below 0.8[MV/cm]shows the ohmic conduction. The region II between 0.9~2[MV/cm] is in proportion to J∝ $E^{1.5}$ , the region III between 2~4[MV/cm] can be explained by the Child’s law, and the region IV above 4[MV/cm]is dominated by the tunneling effect.ect.

  • PDF

Realization and Analysis of p-Type ZnO:Al Thin Film by RF Magnetron Sputtering

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권2호
    • /
    • pp.67-72
    • /
    • 2008
  • Al-doped p-type ZnO thin films were fabricated by RF magnetron sputtering on n-Si (100) and homo-buffer layers in pure oxygen ambient. ZnO ceramic mixed with 2 wt% $Al_2O_3$ was selected as a sputtering target. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are arranged from $1.66{\times}10^{16}$ to $4.04{\times}10^{18}\;cm^{-2}$, mobilities from 0.194 to $198\;cm^2V{-1}s^{-1}$ and resistivities from 0.0963 to $18.4\;{\Omega}cm$. FESEM cross section images of different parts of a p-type ZnO:Al thin film annealed at $800^{\circ}C$ show a compact structure. Measurement for same sample shows that density is $5.40\;cm^{-3}$ which is smaller than theoretically calculated value of $5.67\;cm^{-3}$. Photoluminescence (PL) spectra at 10 K show a shoulder peak of p-type ZnO film at about 3.117 eV which is ascribed to electron transition from donor level to acceptor level (DAP).

저온공정을 이용한 AlN 박막의 우선배향성과 모폴로지에 관한 연구 (The Preferred Orientation and Morphology Characteristics of AlN Thin Films Prepared by RF Power Under Room Temperature Process)

  • 오수영;김응권;이태용;강현일;유현규;송준태
    • 한국전기전자재료학회논문지
    • /
    • 제21권5호
    • /
    • pp.458-462
    • /
    • 2008
  • In this paper, we investigated the (002) preferred orientation and morphology characteristics of AlN thin film by using reactive rf sputtering. Additionally, AlN thin films grown in the range from 150 to 300 W were studied under room temperature without substrate heating and post annealing. Sputtered AlN thin films were well grown on Si substrates and the (002) main peak in XRD patterns showed the highest intensity at 300 W with $0.25^{\circ}$ degree of full width at half-maximum (FWHM). As increased RF power, the surface roughness was increased from 1.0 to 3.4 nm. In Fourier transformation infrared spectroscopy (FTIR), $A_1$ (TO) and $E_1$ (TO) mode closed to AlN thin film confirmed the changes with increasing the intensity rate. From these results, we could confirm a chance of the growth of AlN thin film by only low temperature.

전자빔 후 처리를 이용한 유연성 태양전지용 AZO 박막의 특성 향상에 관한 연구

  • 이학민;황진예;남상훈;김혁;김용환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.191.1-191.1
    • /
    • 2013
  • 현재 산업계 전반적으로 사용되고 있는 박막형 태양전지 투명 전도막의 재료로는 ITO 와 Al, In, Ga, B, Si, F 등으로 도핑된 ZnO 박막이 사용되고 있으며, 그 중에서도 Al 이 도핑된 ZnO 박막은 넓은 밴드갭을 가진 n-type 반도체로서, 적외선 및 가시광 영역에서의 높은 투과성과 우수한 전도성을 가지며, 고온에서 안정된 전기적 특성, 낮은 원가 등의 장점을 지녀 그 응용 연구가 활발히 이루어지고 있다 [1]. 본 연구에서는 RF magnetron Sputter 법을 이용하여 Flexible 기판 위에 AZO 박막을 증착하였다. 실험변수로는 RF power, Pressure등을 이용하였고, 최적조건에서의 박막의 투과도는 90%이상, 면저항은 30 ${\Omega}/{\square}$ 이하를 나타내었다. 그리고 (주)인포비온에서 원천기술을 갖고있는 EBA technology를 이용하여 후처리 하여 전기적, 광학적, 구조적인 특성의 변화를 관찰하였다. AZO 박막의 두께를 측정하기 위해 ${\alpha}-step$과 SEM을 이용하였고, 투과도는 UV-Vis spectrometer를 사용하여 박막의 투과도 변화를 관찰 하였다. 전기적인 특성은 4-Point probe를 이용하여 측정하였다. 또한, 박막의 결정성과 거칠기의 변화는 XRD(X-ray Diffraction)와 원자간력현미경(Atomic Force Microscope; AFM) 을 이용하여 측정하였으며, 전기 광학적 특성 변화는 Figure Of Merit(FOM) 수치로 분석하였다. 본 연구에서 AZO 박막의 특성은 EBA 조사 후 특성의 향상이 이루어지는 것을 관찰할 수 있었다.

  • PDF

Structural and Optical Properties of Copper Indium Gallium Selenide Thin Films Prepared by RF Magnetron Sputtering

  • Kong, Seon-Mi;Fan, Rong;Kim, Dong-Chan;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.158-158
    • /
    • 2011
  • $Cu(In_xGa_{1-x})Se_2$ (CIGS) thin film solar cell is one of the most promising solar cells in photovoltaic devices. CIGS has a direct band gap which varied from 1.0 to 1.26 eV, depending on the Ga to In ratio. Also, CIGS has been studying for an absorber in thin film solar cells due to their highest absorption coefficient which is $1{\times}10^5cm^{-1}$ and good stability for deposition process at high temperature of $450{\sim}590^{\circ}C$. Currently, the highest efficiency of CIGS thin film solar cell is approximately 20.3%, which is closely approaching to the efficiency of poly-silicon solar cell. The deposition technique is one of the most important points in preparing CIGS thin film solar cells. Among the various deposition techniques, the sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have been prepared by rf magnetron sputtering method using a single target. The optical and structural properties of CIGS films are generally dependent on deposition parameters. Therefore, we will explore the influence of deposition power on the properties of CIGS films and the films will be deposited by rf magnetron sputtering using CIGS single target on Mo coated soda lime glass at $500^{\circ}C$. The thickness of CIGS films will be measured by Tencor-P1 profiler. The optical properties will be measured by UV-visible spectroscopy. The crystal structure will be analyzed using X-ray diffraction (XRD). Finally the optimal deposition conditions for CIGS thin films will be developed.

  • PDF

Design and simulation of 500 MHz single cell superconducting RF cavity for SILF

  • Yanbing Sun;Wei Ma;Nan Yuan;Yulin Ge;Zhen Yang;Liping Zou;Liang Lu
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.195-206
    • /
    • 2024
  • Shenzhen Innovation Light source Facility (SILF) is a 3.0 GeV fourth generation diffraction limited synchrotron light source currently under construction in Shenzhen. The SILF storage ring is proposed to use two 500 MHz single cell superconducting radio frequency (SRF) cavities to provide 2.4 MV RF voltage. In this study, we examined the geometric structure of mature CESR superconducting cavities and adopted a beam-pipe-type extraction scheme for high-order modes (HOM). One of the objectives of SRF cavity design and optimization in this study is to reduce Ep/Eacc and Bp/Eacc as much as possible to reduce power loss and ensure stable operation of the cavity. To reduce the risk of beam instability and thermal breakdown, the HOM and Multipacting (MP) are simulated. Moreover, the mechanical properties of the cavity are analyzed, including frequency sensitivity from pressure of liquid helium (LHe), stress, tuning, Lorentz force detuning (LFD), the microphone effect, and buckling. By comprehensive design and optimization of 500 MHz single-cell SRF cavities, a superconducting cavity for SILF storage ring was developed. This paper will detailed present the design and simulation.

RF 마그네트론 스퍼터를 이용하여 제작한 MIZO 박막의 특성에 미치는 기판 온도의 영향 (Characteristics of the Mg and In co-doped ZnO Thin Films with Various Substrate Temperatures)

  • 전기석;지홍섭;임상우;정채환
    • Current Photovoltaic Research
    • /
    • 제4권4호
    • /
    • pp.150-154
    • /
    • 2016
  • Mg and In co-doped ZnO (MIZO) thin films with transparent conducting characteristics were successfully prepared on glass substrates by RF magnetron sputtering technique. The Influence of different substrate temperature (from RT to $400^{\circ}C$) on the structural, morphological, electrical, and optical properties of MIZO thin films were investigated. The MIZO thin film prepared at the substrate temperature of $350^{\circ}C$ showed the best electrical characteristics in terms of the carrier concentration ($4.24{\times}10^{20}cm^{-3}$), charge carrier mobility ($5.01cm^2V^{-1}S^{-1}$), and a minimum resistivity ($1.24{\times}10^{-4}{\Omega}{\cdot}cm$). The average transmission of MIZO thin films in the visible range was over 80% and the absorption edges of MIZO thin films were very sharp. The bandgap energy of MIZO thin films becomes wider from 3.44 eV to 3.6 eV as the substrate temperature increased from RT to $350^{\circ}C$. However, Band gap energy of MIZO thin film was narrow at substrate temperature of $400^{\circ}C$.

Microstructural, Electrical and Optical Features of ZnO Thin Films Prepared by RF Sputter Techniques

  • Cho, Nam-Hee;Park, Jung-Ho;Kim, Byung-Jin
    • The Korean Journal of Ceramics
    • /
    • 제7권2호
    • /
    • pp.85-92
    • /
    • 2001
  • Thin films of ZnO and Al doped ZnO were prepared by rf magnetron sputter techniques. When the oxygen fraction in Ar-O$_2$ sputter gas was about 2.0%, the films exhibited the composition of Zn:O=1.05:1. The films prepared at 250 W contain larger grains than the films grown at 100 W. However, high deposition rate seems to deteriorates the crystallinity as well as Al-substitution, resulting in lower concentration of mobile electrons. The Al-doped ZnO films which were deposited at $500^{\circ}C$ show resistance of 1$\times$10$^-2$ Wcm; optical band gap of the films ranges from 3.25 to 3.40 eV. These electrical and optical features are related with microstructural as well as crystalline characteristics of the films.

  • PDF

XPS STUDY ON SN-DOPED DLC FILMS PREPARED BY RF PLASMA-ENHANCED CVD

  • Inoue, Y.;Komoguchi, T.;Nakata, H.;Takai, O.
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.519-524
    • /
    • 1996
  • We synthesized semiconducting Sn-doped diamondlike carbon films by rf plasma-enhanced chemical vapor deposition using an organotin compound as a dopung gas source. XPS quan-titative analysis for the deposited films after 60 s argon ion etching revealed that Sn concen-tration increased with the partial pressure of the organotin compound in the reactant gas. In C 1s spectra, there was a component due to C-Su bond which had a negative chemical shift. C 1s spectra also indicated that the deposited films were relatively $sp^2$ rich. The chemical shift of the Sn-C bond in Sn $3d_{5/2}$ spectra was about +1.7 eV. The electrical resistivity and the optical transmittance were also investigated.

  • PDF