• Title/Summary/Keyword: dynamic tests

Search Result 2,298, Processing Time 0.026 seconds

Flight Dynamic Identification of a Model Helicopter using CIFER®(I) - Flight test for the acquisition of transmitter input data - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (I) - 조종기 제어 입력 데이터 획득을 위한 비행시험 -)

  • Park, Hee-Jin;Koo, Young-Mo;Bae, Yeoung-Hwan;Oh, Min-Suk;Yang, Chul-Oh;Song, Myung-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.467-475
    • /
    • 2011
  • Aerial spraying technology using a small unmanned helicopter is an efficient and practical tool to achieve stable agricultural production to improve the working condition. An attitude controller for the agricultural helicopter would be helpful to aerial application operator. In order to construct the flight controller, a state space model of the helicopter should be identified using a dynamic analysis program, such as CIFER$^{(R)}$. To obtain the state space a model of the helicopter, frequency-sweep flight tests were performed and time history data were acquired using a custom-built stick position transmitter. Four elements of stick commands were accessed for the collective pitch (heave), aileron (roll), elevator (pitch), rudder (yaw) maneuvers. The test results showed that rudder stick position signal was highly linear with rudder input channel signal of the receiver; however, collective pitch stick position signal was exponentially manipulated for the convenience of control stick handling. The acquired stick position and flight dynamic data during sweep tests would be analyzed in the followed study.

An Evaluation of Stress-Strain Behaviour of Earth-Rockfill Dam and Causes of Crack due to Water Table Fluctuation (수위변동에 따른 Earth-Rockfill 댐의 거동 및 균열원인에 대한 평가)

  • 김상규;한성길;이민형;안상로
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.149-162
    • /
    • 2001
  • Longitudinal cracks have occurred on the crest of dams soon after their construction of two earth-rocfill dams located in Samlangjin. They are a pair of pumped storage dams constructed for generation of electrical power. The upper dam and lower dam are subjected to the variation of water level more than 10m once in a day alteratively. This paper deals with the finding of possible causes for longitudinal cracks about upper dam. The dominant cause was considered to be due to fluctuation of water load, for which numerical analysis was carried out using the hyperbolic model. In order to obtain parameters necessary to the analysis, a series of triaxial tests was performed for both core and rock material. Also dynamic triaxial test was performed to obtain dynamic properties of soils, which could be used as input data to simulate frequent variation of stress change due to the water fluctuation. It was known from the numerical analysis that the confining pressure of upper 4m from the top of the crest become negative after repeating of water load, meaning that tension cracks occurred in the top portion of the crest. The depth of longitudinal cracks has been investigated by digging test pit on the crest. This results agree with the field observation.

  • PDF

Experimental axial force identification based on modified Timoshenko beam theory

  • Li, Dong-sheng;Yuan, Yong-qiang;Li, Kun-peng;Li, Hong-nan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.153-173
    • /
    • 2017
  • An improved method is presented to estimate the axial force of a bar member with vibrational measurements based on modified Timoshenko beam theory. Bending stiffness effects, rotational inertia, shear deformation, rotational inertia caused by shear deformation are all taken into account. Axial forces are estimated with certain natural frequency and corresponding mode shape, which are acquired from dynamic tests with five accelerometers. In the paper, modified Timoshenko beam theory is first presented with the inclusion of axial force and rotational inertia effects. Consistent mass and stiffness matrices for the modified Timoshenko beam theory are derived and then used in finite element simulations to investigate force identification accuracy under different boundary conditions and the influence of critical axial force ratio. The deformation coefficient which accounts for rotational inertia effects of the shearing deformation is discussed, and the relationship between the changing wave speed and the frequency is comprehensively examined to improve accuracy of the deformation coefficient. Finally, dynamic tests are conducted in our laboratory to identify progressive axial forces of a steel plate and a truss structure respectively. And the axial forces identified by the proposed method are in good agreement with the forces measured by FBG sensors and strain gauges. A significant advantage of this axial force identification method is that no assumption on boundary conditions is needed and excellent force identification accuracy can be achieved.

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • In the trackbed design using elastic multilayer model, the stress-dependent resilient modulus $(E_R)$ is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. The this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil (SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

Driveability Analysis of Driven Steel Tublar Piles (타입 강관말뚝의 항타관입성 분석)

  • 조천환
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.123-132
    • /
    • 2003
  • The final purpose of driveability analysis is to confirm whether a selected hammer drives a pile to a desired penetration depth and/or capacity without damage. The capacities from static analysis methods are meaningless if the pile cannot be driven to the required design depth and the ultimate capacity without damage. It often occurs that there are big differences between the capacities from measurements and calculations. It may be because the driveability is not evaluated due to the lack of engineers' understanding of the driveability of pile driving. The engineers in the field sometimes assume simply the penetration depth with standard penetration value only. In this study some test pilings with dynamic pile loading tests were performed to give an understanding about the driveability. The influence factors(driving resistance, impedance, material strength, hammer) on the driveability of steel piles were analysed with the monitoring data obtained from the dynamic load tests. It was shown that more cost-effective design can be made in case the driveability analysis and high strength steel pile are appropriately adopted in the design.

Assessment of Dynamic Deep Compaction Applied to Waste Landfill (폐기물 매립지반에 대한 동다짐공법 적용평가)

  • Kim, Young Muk;Lee, Sang Yong;Kim, Man Goo;Shin, Seung Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.209-222
    • /
    • 1993
  • This article is a case study of the ground improvement project which was carried out for manmade landfill. The project area is located near to Kapchun, Teajon and composed of the municipal wastes dumped, demolished building debris, coal ash and industrial waste made between 1983 and 1989. The DDC(dynamic deep compaction) based on the results of the test compaction at two representative locations was carried out from March 16, 1992 to Oct. 25, 1992. Field measurements and laboratory tests were carried out for ground improvement assessment and quality control for the DDC(dynamic deep compaction) work. From the results of field measurements and laboratory tests, it was found that the DDC work was successful: waste landfill was compressed considerably (${\fallingdotseq}$ 15% of full depth); and the strength was increased satisfactorily (${\fallingdotseq}$ 100% of original penetration resistance), Also, it is expected that the results of this work could be a guide to the future DDC work with the similar ground conditions, i.e. man-made landfills.

  • PDF

Representative Shear Wave Velocity of Geotechnical Layers by Synthesizing In-situ Seismic Test Data in Korea (현장 탄성파시험 자료 종합을 통한 국내 지반지층의 대표 전단파속도 제안)

  • Sun, Chang-Guk;Han, Jin-Tae;Cho, Wanjei
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.293-307
    • /
    • 2012
  • Shear wave velocity is commonly invoked in explaining geophysical phenomena and in solving geotechnical engineering problems. In particular, the importance of shear wave velocity in geotechnical earthquake engineering has been widely recognized for seismic design and seismic performance evaluation. In the present study, various insitu seismic tests were performed to evaluate geotechnical dynamic characteristics at 183 sites in Korea, and shear wave velocity profiles with depth were determined to be representative of the dynamic properties at the investigated sites. Subsurface soil and rock layers at the target sites were reclassified into five geotechnical layers: fill, alluvial soil, weathered soil, weathered rock, and bedrock, taking into account their general uses in geotechnical earthquake engineering practice. Average shear wave velocity profiles for the five geotechnical layers were obtained by synthesizing the shear wave velocity profiles from seismic tests in the field. Based on the profiles, a representative shear wave velocity value was determined for each layer, for use in engineering seismology and geotechnical earthquake engineering.

Shear Strength of Hairpin Reinforced Cast-In-Place Anchors by Static and Seismic Qualification Tests (헤어핀 보강 선설치앵커의 정적 및 지진모의실험에 의한 전단 저항강도 평가)

  • Kim, Dong Hyun;Park, Yong Myung;Kim, Tae Hyung;Jo, Sung Hoon;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.333-345
    • /
    • 2015
  • This study evaluated the static and dynamic shear strength of cast-in-place anchors reinforced with hairpin bars in uncracked and cracked concrete. The anchors 30mm in diameter reinforced with D10 hairpin bar were designed with an edge distance of 150mm and an embedment depth of 240mm. The cracked specimens consisted of the orthogonal and parallel cracks to the direction of shear loads, respectively. The dynamic strength was evaluated using seismic qualification tests based on the ACI 355.2 standard. The shear strength of the hairpin reinforced anchor was hardly correlated to the concrete cracks and the dynamic strength was similar to its static shear strength. Finally, a consideration on the design strength of hairpin reinforced anchors was presented.

Performance Test and Numerical Model Development of Restoring Viscous Damper for X-type Damper System (X형 감쇠시스템을 위한 복원성 점성 감쇠기 성능 실험 및 수치모형 개발)

  • Kim, David;Park, Jangho;Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.52-57
    • /
    • 2016
  • In this study, a restoring viscous damper is introduced for X-type damper system which is designed for the seismic response control of large spatial structures. A nonlinear numerical model for its behavior is developed using the result of dynamic loading tests. The X-type damper system is composed of restoring viscous dampers and connecting devices such as adjustable wire bracing, where the damping capacity of the system is controllable by changing the number of the dampers. The restoring viscous damper is devised to exert main damping force in tension direction, which is effective to prevent the buckling of bracing subjected to compressive axial force. To evaluate the performance of the proposed damper, dynamic cyclic loading tests are performed by using manufactured dampers at full scale. In order to construct the numerical model of the damper system, its model parameters are first identified using a nonlinear curve fitting method with the test data. The numerical simulations are then performed to validate the accuracy of the numerical model in comparison with the experimental test results. It is expected that the proposed system is effectively applicable to various building structures for seismic performance enhancement.

Effects of Ankle Joint Taping on Postural Balance Control in Stroke Patients

  • Kim, Yang Rae;Kim, Jae Ic;Kim, Yong Youn;Kang, Kwon Young;Kim, Bo Kyoung;Park, Joo Hyun;An, Ho Jung;Min, Kyung Ok
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.3 no.2
    • /
    • pp.446-452
    • /
    • 2012
  • This study aims to examine the effects of taping of the ankle joint on the static and dynamic balance and gait ability of stroke patients. Twenty-six stroke patients receiving physical therapy at a hospital located in Gyeonggi-do were divided equally into a group that had taping in physical therapy and an ordinary physical therapy group. They exercised for 30 minutes each, 3 times per week for 8 weeks from June to August 2011. Romberg's eye open and eye closed tests, limits of stability(LOS), forward and back test, timed up and go test(TUG) and 10-meter gait velocity test were performed to evaluate static balance, dynamic balance, and gait ability, respectively, prior to and 8 weeks after the intervention. Differences within each group in relation to the lapse of time were compared by a paired t-test. Differences between the two groups were compared by an independent t-test. Regarding comparison of differences within each group, all tests resulted in significant changes in both groups after the intervention (p<.05). Comparison of differences between the two groups showed that taping in the physical therapy group had significantly better test results than the ordinary physical therapy group in all measured items(p<.05). The after effects of ankle taping on stroke patients are more efficient and effective than ordinary physical therapy alone in improving balance and gait ability.