• Title/Summary/Keyword: dynamic tests

Search Result 2,298, Processing Time 0.025 seconds

Study on the Flow Characteristics of the Epoxy Resin w.r.t. Sizing Materials of Carbon Fibers (탄소섬유 사이징에 따른 에폭시 수지 유동 특성에 관한 연구)

  • Lim, Su-Hyun;On, Seung Yoon;Kim, Seong-Su
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.379-384
    • /
    • 2018
  • This paper aims to study flow characteristics of epoxy resin w.r.t. the sizing agents treated on the carbon fibers which have the same surface morphologies before sizing treatment. Dynamic contact angle (DCA) was measured to evaluate wettability of a single carbon fiber. Wicking test and Vacuum Assisted Resin Transfer Molding (VARTM) were performed to find relation between DCA measurement results and impregnation characteristics. In addition, surface properties of the carbon fibers such as surface free energy and chemical compositions were measured and interfacial shear strength (IFSS) between the carbon fiber and the resin were experimentally characterized by using micro-droplet tests. According to these experimental results, the sizing agent for carbon fibers should have appropriate level of surface free energy and good chemical compatibility with the resin to reconcile resin flow characteristics and interfacial strength.

Autonomous Mission Management Software Design and Verification Technique for Unmanned Aerial Vehicles (무인기 자율 임무관리 소프트웨어 설계 및 검증 기법)

  • Chang, Woohyuk;Lee, Seung-Gyu;Kim, Yun-Geun;Oh, Taegeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.505-513
    • /
    • 2021
  • We propose an autonomous mission management software design and verification technique for unmanned aerial vehicles to autonomously mitigate dynamic situation changes occurred in the inside and outside of an aircraft in compliance with the mitigation priority order. The proposed autonomous mission management software is designed in a modular architecture that consists of concurrently executing multiple threads. To verify it, we suggest three verification steps: 1) software integration by checking the expected request/response messages between the threads for all possible dynamic situation changes; 2) integration test to verify the software functionality; 3) performance test to verify the quantitative software performance. Especially, the software integration test environment is built and utilized to carry out the integration and performance tests.

Deformation and permeability evolution of coal during axial stress cyclic loading and unloading: An experimental study

  • Wang, Kai;Guo, Yangyang;Xu, Hao;Dong, Huzi;Du, Feng;Huang, Qiming
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.519-529
    • /
    • 2021
  • In coal mining activities, the abutment stress of the coal has to undergo cyclic loading and unloading, affecting the strength and seepage characteristics of coal; additionally, it can cause dynamic disasters, posing a major challenge for the safety of coal mine production. To improve the understanding of the dynamic disaster mechanism of gas outburst and rock burst coupling, triaxial devices are applied to axial pressure cyclic loading-unloading tests under different axial stress peaks and different pore pressures. The existing empirical formula is use to perform a non-linear regression fitting on the relationship between stress and permeability, and the damage rate of permeability is introduced to analyze the change in permeability. The results show that the permeability curve obtained had "memory", and the peak stress was lower than the conventional loading path. The permeability curve and the volume strain curve show a clear symmetrical relationship, being the former in the form of a negative power function. Owing to the influence of irreversible deformation, the permeability difference and the damage of permeability mainly occur in the initial stage of loading-unloading, and both decrease as the number of cycles of loading-unloading increase. At the end of the first cycle and the second cycle, the permeability decreased in the range of 5.777 - 8.421 % and 4.311-8.713 %, respectively. The permeability decreases with an increase in the axial stress peak, and the damage rate shows the opposite trend. Under the same conditions, the permeability of methane is always lower than that of helium, and it shows a V-shape change trend with increasing methane pressures, and the permeability of the specimen was 3 MPa > 1 MPa > 2 MPa.

Effect of Cr Addition to High Mn Steel on Flow-Accelerated Corrosion Behaviors in Neutral Aqueous Environments (Cr 첨가가 고망간강의 중성 수용액 환경 내 유동가속부식 거동에 미치는 영향)

  • Jeong, Yeong Jae;Park, Jin Sung;Bang, Hye Rin;Lee, Soon Gi;Choi, Jong Kyo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.373-383
    • /
    • 2021
  • The effect of Cr addition to high Mn steel on flow-accelerated corrosion (FAC) behavior in a neutral aqueous environment was evaluated. For comparison, two types of conventional ferritic steels (API X70 steel and 9% Ni steel) were used. A range of experiments (electrochemical polarization and impedance tests, weight loss measurement, and metallographic observation of corrosion scale) were conducted. This study showed that high Mn steel with 3% Cr exhibited the highest resistance to FAC presumably due to the formation of a bi-layer scale structure composed of an inner Cr enriched Fe oxide and an outer Mn substituted partially with Fe oxide on the surface. Although the high Mn steels had the lowest corrosion resistance at the initial corrosion stage due to rapid dissolution kinetics of Mn elements on their surface, the kinetics of inner scale (i.e. Cr enriched Fe oxide) formation on Cr-bearing high Mn steel was faster in dynamic flowing condition compared to stagnant condition. On the other hand, the corrosion scales formed on API X70 and 9% Ni steels did not provide sufficient anti-corrosion function during the prolonged exposure to dynamic flowing conditions.

Dynamic characteristics of single door electrical cabinet under rocking: Source reconciliation of experimental and numerical findings

  • Jeon, Bub-Gyu;Son, Ho-Young;Eem, Seung-Hyun;Choi, In-Kil;Ju, Bu-Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2387-2395
    • /
    • 2021
  • Seismic qualifications of electrical equipment, such as cabinet systems, have been emerging as the key area of nuclear power plants in Korea since the 2016 Gyeongju earthquake, including the high-frequency domain. In addition, electrical equipment was sensitive to the high-frequency ground motions during the past earthquake. Therefore, this paper presents the rocking behavior of the electrical cabinet system subjected to Reg. 1.60 and UHS. The high fidelity finite element (FE) model of the cabinet related to the shaking table test data was developed. In particular, the first two global modes of the cabinet from the experimental test were 16 Hz and 24 Hz, respectively. In addition, 30.05 Hz and 37.5 Hz were determined to be the first two local modes in the cabinet. The high fidelity FE model of the cabinet using the ABAQUS platform was extremely reconciled with shaking table tests. As a result, the dynamic properties of the cabinet were sensitive to electrical instruments, such as relays and switchboards, during the shaking table test. In addition, the amplification with respect to the vibration transfer function of the cabinet was observed on the third floor in the cabinet due to localized impact corresponding to the rocking phenomenon of the cabinet under Reg.1.60 and UHS. Overall, the rocking of the cabinet system can be caused by the low-frequency oscillations and higher peak horizontal acceleration.

Effect of Particle Sphericity on the Rheological Properties of Ti-6Al-4V Powders for Laser Powder Bed Fusion Process (LPBF용 타이타늄 합금 분말의 유변특성에 대한 입자 구형도의 영향)

  • Kim, T.Y.;Kang, M.H.;Kim, J.H.;Hong, J.K.;Yu, J.H.;Lee, J.I.
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.99-109
    • /
    • 2022
  • Powder flowability is critical in additive manufacturing processes, especially for laser powder bed fusion. Many powder features, such as powder size distribution, particle shape, surface roughness, and chemical composition, simultaneously affect the flow properties of a powder; however, the individual effect of each factor on powder flowability has not been comprehensively evaluated. In this study, the impact of particle shape (sphericity) on the rheological properties of Ti-6Al-4V powder is quantified using an FT4 powder rheometer. Dynamic image analysis is conducted on plasma-atomized (PA) and gas-atomized (GA) powders to evaluate their particle sphericity. PA and GA powders exhibit negligible differences in compressibility and permeability tests, but GA powder shows more cohesive behavior, especially in a dynamic state, because lower particle sphericity facilitates interaction between particles during the powder flow. These results provide guidelines for the manufacturing of advanced metal powders with excellent powder flowability for laser powder bed fusion.

Damage detection in steel structures using expanded rotational component of mode shapes via linking MATLAB and OpenSees

  • Toorang, Zahra;Bahar, Omid;Elahi, Fariborz Nateghi
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • When a building suffers damages under moderate to severe loading condition, its physical properties such as damping and stiffness parameters will change. There are different practical methods besides various numerical procedures that have successfully detected a range of these changes. Almost all the previous proposed methods used to work with translational components of mode shapes, probably because extracting these components is more common in vibrational tests. This study set out to investigate the influence of using both rotational and translational components of mode shapes, in detecting damages in 3-D steel structures elements. Three different sets of measured components of mode shapes are examined: translational, rotational, and also rotational/translational components in all joints. In order to validate our assumptions two different steel frames with three damage scenarios are considered. An iterative model updating program is developed in the MATLAB software that uses the OpenSees as its finite element analysis engine. Extensive analysis shows that employing rotational components results in more precise prediction of damage location and its intensity. Since measuring rotational components of mode shapes still is not very convenient, modal dynamic expansion technique is applied to generate rotational components from measured translational ones. The findings indicated that the developed model updating program is really efficient in damage detection even with generated data and considering noise effects. Moreover, methods which use rotational components of mode shapes can predict damage's location and its intensity more precisely than the ones which only work with translational data.

Integration of Dynamic Road Environmental Data for the Creation of Driving Simulator Scenarios (드라이빙 시뮬레이터 시나리오 개발을 위한 동적 도로환경 데이터 융합)

  • Gwon, Joonho;Jun, Yeonsoo;Yeom, Chunho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.278-287
    • /
    • 2022
  • With the development of technology, driving simulators have been used in various ways. In driving simulator experiments, scenario creation is essential to increase fidelity, achieve research aims, and provide an immersive experience to the driver. However, challenges remain when creating realistic scenarios, such as developing a database and the execution of scenarios in real-time. Therefore, to create realistic scenarios, it is necessary to acquire real-time data. This study intends to develop a method of acquiring real-time weather and traffic speed information for actual, specific roads. To this end, this study suggests the concatenator for dynamic data obtained from Arduino sensors and public open APIs. Field tests are then performed on actual roads to evaluate the performance of the proposed solution. Such results may give meaningful information for driving simulator studies and for creating realistic scenarios.

A Study on Ground and Object Separation Techniques Utilizing 3D Point Cloud Data in Urban Air Mobility (UAM) Environments (UAM 환경에서의 3D Point Cloud Data 지면/객체 분리 기법 연구)

  • Bon-soo Koo;In-ho choi;Jae-rim Yu
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.481-487
    • /
    • 2023
  • Recently, interest in UAM (Urban Air Mobility) has surged as a critical solution to urban traffic congestion and air pollution issues. However, efficient UAM operation requires accurate 3D Point Cloud data processing, particularly in separating the ground and objects. This paper proposes and validates a method for effectively separating ground and objects in a UAM environment, taking into account its dynamic and complex characteristics. Our approach combines attitude information from MEMS sensors with ground plane estimation using RANSAC, allowing for ground/object separation that isless affected by GPS errors. Simulation results demonstrate that this method effectively operates in UAM settings, marking a significant step toward enhancing safety and efficiency in urban air mobility. Future research will focus on improving the accuracy of this algorithm, evaluating its performance in various UAM scenarios, and proceeding with actual drone tests.

Applicability of CPT-based Toe Bearing Capacity of PHC Driven Piles (PHC 항타말뚝에 대한 CPT 선단 지지력 산정식의 적용성)

  • Le, Chi Hung;Chung, Sung-Gyo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.107-118
    • /
    • 2009
  • As CPT penetration tends to show a similar behavior to that of pile driving, a number of methods for estimating the toe bearing capacity of piles based on CPT data have been proposed. To evaluate the applicability of the methods in this country, a total of 172 dynamic load tests data on PHC piles and 82 CPT data at a site in the Nakdong River estuary were collected. A specific four-step procedure was adopted for the selection of the reliable data, and statistical techniques were then applied to the analysis of the applicability. The results indicated that among a total of 10 CPT-based methods applied, the best one is the Aoki method (1975), followed by the LCPC (1982), ICP (2005) methods and others.