DOI QR코드

DOI QR Code

Effect of Particle Sphericity on the Rheological Properties of Ti-6Al-4V Powders for Laser Powder Bed Fusion Process

LPBF용 타이타늄 합금 분말의 유변특성에 대한 입자 구형도의 영향

  • Kim, T.Y. (School of Materials Science and Engineering, Pusan National University) ;
  • Kang, M.H. (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, J.H. (Titanium Department, Korea Institute of Materials Science (KIMS)) ;
  • Hong, J.K. (Titanium Department, Korea Institute of Materials Science (KIMS)) ;
  • Yu, J.H. (Powder Materials Division, Korea Institute of Materials Science (KIMS)) ;
  • Lee, J.I. (School of Materials Science and Engineering, Pusan National University)
  • 김태윤 (부산대학교 재료공학과) ;
  • 강민혁 (부산대학교 재료공학과) ;
  • 김재혁 (한국재료연구원 타이타늄연구실) ;
  • 홍재근 (한국재료연구원 타이타늄연구실) ;
  • 유지훈 (한국재료연구원 분말재료연구본부) ;
  • 이제인 (부산대학교 재료공학과)
  • Received : 2022.03.11
  • Accepted : 2022.04.11
  • Published : 2022.04.28

Abstract

Powder flowability is critical in additive manufacturing processes, especially for laser powder bed fusion. Many powder features, such as powder size distribution, particle shape, surface roughness, and chemical composition, simultaneously affect the flow properties of a powder; however, the individual effect of each factor on powder flowability has not been comprehensively evaluated. In this study, the impact of particle shape (sphericity) on the rheological properties of Ti-6Al-4V powder is quantified using an FT4 powder rheometer. Dynamic image analysis is conducted on plasma-atomized (PA) and gas-atomized (GA) powders to evaluate their particle sphericity. PA and GA powders exhibit negligible differences in compressibility and permeability tests, but GA powder shows more cohesive behavior, especially in a dynamic state, because lower particle sphericity facilitates interaction between particles during the powder flow. These results provide guidelines for the manufacturing of advanced metal powders with excellent powder flowability for laser powder bed fusion.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(20013202)과 2019년도 부산대학교 신임교수연구 정착금 지원으로 이루어졌습니다.

References

  1. B. Dutta and F. S. Froes: Met. powder Rep., 72 (2017) 96. https://doi.org/10.1016/j.mprp.2016.12.062
  2. S. Bahl, S. Suwas and K. Chatterjee: Int. Mater. Rev., 66 (2021) 114. https://doi.org/10.1080/09506608.2020.1735829
  3. A. B. Badiru, V. V. Valencia and D. Liu: Additive Manufacturing Handbook: Product Development for the Defense Industry, CRC Press, (2017).
  4. E. Uhlmann, R. Kersting, T. B. Klein, M. F. Cruz and A. V. Borille: Procedia Cirp, 35 (2015) 55. https://doi.org/10.1016/j.procir.2015.08.061
  5. T. S. Jang, D. E. Kim, G.-N. Han, C.-B. Yoon and H. D. Jung: Biomed. Eng. Lett., 10 (2020) 505. https://doi.org/10.1007/s13534-020-00177-2
  6. Y. Sun, M. Aindow and R. J. Hebert: Addit. Manuf., 21 (2018) 544.
  7. V. Seyda and D. Herzog: J. Laser Appl., 29 (2017) 022311. https://doi.org/10.2351/1.4983240
  8. S. E. Brika, M. Letenneur, C. A. Dion and V. Brailovski: Addit. Manuf., 31 (2020) 100929. https://doi.org/10.1016/j.addma.2019.100929
  9. M. H. Korayem, J. Zhang and Y. Zou: Powder Technol., 392 (2021) 536. https://doi.org/10.1016/j.powtec.2021.07.026
  10. P. Li, D. H. Warner, A. Fatemi and N. Phan: Int. J. Fatigue, 85 (2016) 130. https://doi.org/10.1016/j.ijfatigue.2015.12.003
  11. S. Vock, B. Kloden, A. Kirchner, T. Weissgarber and B. Kieback: Prog. Addit. Manuf., 4 (2019) 383. https://doi.org/10.1007/s40964-019-00078-6
  12. V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar and R. Singh: Additive Manufacturing Handbook, CRC Press, (2017) 251.
  13. D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann: Acta Mater., 117 (2016) 371. https://doi.org/10.1016/j.actamat.2016.07.019
  14. R. E. Laureijs, J. B. Roca, S. P. Narra, C. Montgomery, J. L. Beuth and E. R. H. Fuchs: J. Manuf. Sci. Eng., 139 (2017) 081010. https://doi.org/10.1115/1.4035420
  15. J. Capus: Met. Powder Rep., 72 (2017) 384. https://doi.org/10.1016/j.mprp.2017.11.001
  16. H. Kissel: Met. Powder Rep., 76 (2021) 196. https://doi.org/10.1016/j.mprp.2021.06.002
  17. P. Sun, Z. Z. Fang, Y. Zhang and Y. Xia: JOM, 69 (2017) 1853. https://doi.org/10.1007/s11837-017-2513-5
  18. I. Polozov, V. Suriiarov, A. Kantyukov, N. Razumov, I. Goncharov, T. Makhmutov, A. Silin, A. Kim, K. Starikov, A. Shamshurin and A. Popovich: Addit. Manuf., 34 (2020) 101374.
  19. J.Hernandez, S. J. Li, E. Martinez, L. E. Murr, X. M.Pan, K. N. Amato, X. Y. Cheng, F. Yang, C. A. Terrazas, S. M. Gaytan, Y. L. Hao, R.Yang, F.Medina, R. B.Wicker: J. Mater. Sci. Technol., 29 (2013) 1011. https://doi.org/10.1016/j.jmst.2013.08.023
  20. A. Kreitcberg, V. Brailovski and S. Prokoshkin: J. Mater. Process. Technol., 252 (2018) 821. https://doi.org/10.1016/j.jmatprotec.2017.10.052
  21. P. Moghimian, T. Poirie, M. H. Korayem, J. A. Zavala, J. Kroeger, F. Marion, F. Larouche: Addit. Manuf., 43 (2021) 102017.
  22. A. S. Tehrani, M. H. Korayem, S. Shao, M. Haghshenas, N. Shamsaei: Addit. Manuf., 51(2022) 102584.
  23. Z.Wu, M. Asherloo, R. Jiang, M. H. Delpazir, N. Sivakumar, M. Paliwal, J. Capone, B. Gould, A. Rollett, Amir Mostafaei, Addit. Manuf., 47 (2021) 102323.
  24. L. Cordova, M. Campos and T. Tinga: JOM, 71 (2019) 1062. https://doi.org/10.1007/s11837-018-3305-2
  25. D. Schulze: Powders and Bulk Solids. Springer, (2008) 22.
  26. M. Leturia, M. Benali, S. Lagarde, I. Ronga and K. Saleh: Powder Technol., 253 (2014) 406. https://doi.org/10.1016/j.powtec.2013.11.045
  27. R. Freeman: Powder Technol., 174 (2007) 25. https://doi.org/10.1016/j.powtec.2006.10.016
  28. B. Lee, D.-K. Kim, Y. I. Kim, D. H. Kim, Y. Son, K.-T. Park and T.-S. Kim J. Powder Mater., 27 (2020) 509.
  29. X. Liu, C. Drakontis and S. Ami: Int. J. Cosmet. Sci., 42 (2020) 208. https://doi.org/10.1111/ics.12608
  30. M. Leaper, K. Ali and A. J. Ingham: Chem. Eng. Technol., 41 (2018) 102. https://doi.org/10.1002/ceat.201600651
  31. Q. Sian, S. Sittipod, A. Garg and R. P. K. Ambrose: J. Cereal Sci., 63 (2015) 88. https://doi.org/10.1016/j.jcs.2015.03.010
  32. J. Clayton: Metal Powder Rep., 69 (2014) 14. https://doi.org/10.1016/S0026-0657(14)70223-1
  33. W. H. Wei, L. Z. Wang, T. Chen, X. M. Duan and W. Li: Adv. Powder Technol., 28 (2017) 2431. https://doi.org/10.1016/j.apt.2017.06.025
  34. X. Fu, D. Huck, L. Makein, B. Armstrong, U. Willen and T. Freeman: Particuology, 10 (2012) 203. https://doi.org/10.1016/j.partic.2011.11.003
  35. R. Freeman and X. Fu: Powder Metall., 51 (2008) 196. https://doi.org/10.1179/174329008X324115
  36. A. Madian, M. Leturia, C. Ablitzer, G. B. Granger and K. Saleh: Nucl. Eng. Technol., 52 (2020) 1714. https://doi.org/10.1016/j.net.2020.01.012
  37. A. W. Jenike: Storage and Flow of Solids. Bulletin No. 123, Utah State University, 53 (1964).
  38. D. Geldart, N. Harnby and A. Wong: Powder Technol., 37 (1984) 25. https://doi.org/10.1016/0032-5910(84)80003-0
  39. G. Forte, P. J. Clark, Z. Yang, E. H. Stitt and M. Marigo: Powder Technol., 337 (2018) 25. https://doi.org/10.1016/j.powtec.2017.12.020
  40. J. Visser: Powder Technol., 58 (1989) 1. https://doi.org/10.1016/0032-5910(89)80001-4
  41. A. Strondl, O. Lyckfeldt, H. Bordin and U. Ackelid: JOM, 67 (2015) 549. https://doi.org/10.1007/s11837-015-1304-0