• 제목/요약/키워드: dynamic stiffness

검색결과 2,209건 처리시간 0.029초

Effect of Neuro Dynamic Technique and Instrument Assisted Soft Tissue Mobilization on Lower Extremity Muscle Tone, Stiffness, Static Balance in Stroke Patients

  • Kim, Myeong-Jun;Kim, Tae-Ho
    • The Journal of Korean Physical Therapy
    • /
    • 제32권6호
    • /
    • pp.359-364
    • /
    • 2020
  • Purpose: This study was undertaken to compare the efficacy of instrument assisted soft tissue mobilization (IASTM) and a neural dynamic technique (NDYT). As an intervention to treat spastic lower limb muscle tone, stiffness, and static balance in stroke patients. Methods: Totally, 26 participants were assigned randomly to two groups: the IASTM (n=13) and NDYT (n=13) groups. Both groups were subjected to their respective technique for 15 minutes, 5 times a week, for 6 weeks. Muscle tone, stiffness, and static balance were evaluated before and after training, to compare both group changes. Results: IASTM group showed significant decrease in the gastrocnemius medial region and semitendinosus muscle tone and stiffness (p<0.05) compare to NDYT group; however, no significant different was observed in static balance between groups (p>0.05). Conclusion: The results suggest that IASTM is an effective method for decreasing the muscle tone and stiffness in acute stroke patients.

A comparison between the dynamic and static stiffness of ballasted track: A field study

  • Mosayeb, Seyed-Ali;Zakeri, Jabbar-Ali;Esmaeili, Morteza
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.757-769
    • /
    • 2016
  • Rail support modulus is an important parameter for analysis and design of ballasted railway tracks. One of the challenges in track stiffness assessment is its dynamic nature under the moving trains which differs it from the case of standing trains. So the present study is allocated to establish a relation between the dynamic and static stiffness of ballasted tracks via field measurements. In this regard, two different sites of ballasted tracks with wooden and concrete sleepers were selected and the static and dynamic stiffness were measured based on Talbot - Wasiutynski method. In this matter, the selected tracks were loaded by two heavy and light car bodies for standing and moving conditions and consequently the deflection basins were evaluated in both sites. Knowing the deflection basins respect to light and heavy loading conditions, both of static and dynamic stiffness values were extracted. Finally two definite relations were obtained for ballasted tracks with wooded and concrete sleepers.

Dynamic analysis of trusses including the effect of local modes

  • Levy, Eldad;Eisenberger, Moshe
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.81-94
    • /
    • 1999
  • The dynamic analysis of trusses using the finite element method tends to overlook the effect of local member dynamic behavior on the overall response of the complete structure. This is due to the fact that the lateral inertias of the members are omitted from the global inertia terms in the structure mass matrix. In this paper a condensed dynamic stiffness matrix is formulated and used to calculate the exact dynamic properties of trusses without the need to increase the model size. In the examples the limitations of current solutions are presented together with the exact results obtained from the proposed method.

정밀산업(TFT-LCD) 공장 내 노광장치의 대형 세대별 동강성 허용규제치 예측 및 평가에 관한 연구 (A Study on How to Predict and Evaluate the Dynamic Stiffness Criteria of Exposure Equipment in Precision Industrial Factory(TFT-LCD))

  • 백재호;전종균;박상곤
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.15-20
    • /
    • 2011
  • The lithography system installed inside precision industry's (e.g. TFT-LCD) production factories are increasing in size, thereby increasing its dynamic load along with it. Such condition causes vibration within the area where the system is installed, which then negatively affects the production line to produce defective products. To prevent this type of situation, the facilities should adopt dynamic design that considers the lithography system's dynamic load. This study predicts the maximum value allowed for dynamic stiffness (which is a ratio of vibration response against a single unit of the dynamic load) of the lithography system and explains the result of its application on actual structures inside the facilities.

주행 중 실내소음과 Wheel의 Lateral Dynamic Stiffness와의 상관관계에 대한 시험적 연구 (The Experimental Study on the Correlation of the Interior Noise of a Driving Vehicle with Lateral Dynamic Stiffness of the Wheel)

  • 김병진;사정환;박진성;박현우;조성근;정헌술
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제2권1호
    • /
    • pp.9-13
    • /
    • 2014
  • 현재 소비자들이 자동차를 선택하는 여러 이유 중에서, NVH 성능이 아주 중요한 역할을 하고 있다. 근래 하이브리드 및 전기자동차들은 전통적인 차량의 주요 소음원 이었던 엔진의 소음이 거의 발생되지 않아 자동차 실내의 소음에 대한 관심은 더욱 커지고 있다. 해외 참고문헌에 의하면 자동차 휠의 높은 Lateral Dynamic Stiffness(LDS)가 운전 중 발생되는 Structure Bone Noise(SBN)를 저감시키는 것으로 기술되어 있다. 하지만 유효한 기준 및 시험적 결과가 미비하여, 본 연구에서는 LDS가 서로 다른 휠에 동일 타이어를 부착하여 실내소음을 시험 측정하였다. 그 결과 휠의 LDS에 따라 실내소음이 변화되는 것을 확인하였다. 이는 휠의 최적설계로 실내소음의 저감이 가능할수 있다.

Dynamic analysis of buildings considering the effect of masonry infills in the global structural stiffness

  • de Souza Bastos, Leonardo;Guerrero, Carolina Andrea Sanchez;Barile, Alan;da Silva, Jose Guilherme Santos
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.169-184
    • /
    • 2019
  • This research work presents a study that aims to assess the dynamic structural behaviour and also investigate the human comfort levels of a reinforced concrete building, when subjected to nondeterministic wind dynamic loadings, considering the effect of masonry infills on the global stiffness of the structural model. In general, the masonry fills most of the empty areas within the structural frames of the buildings. Although these masonry infills present structural stiffness, the common practice of engineers is to adopt them as static loads, disregarding the effect of the masonry infills on the global stiffness of the structural system. This way, in this study a numerical model based on sixteen-storey reinforced concrete building with 48 m high and dimensions of $14.20m{\times}15m$ was analysed. This way, static, modal and dynamic analyses were carried out in order to simulate the structural model based on two different strategies: no masonry infills and masonry infills simulated by shell finite elements. In this investigation, the wind action is considered as a nondeterministic process with unstable properties and also random characteristics. The fluctuating parcel of the wind is decomposed into a finite number of harmonic functions proportional to the structure resonant frequency with phase angles randomly determined. The nondeterministic dynamic analysis clearly demonstrates the relevance of a more realistic numerical modelling of the masonry infills, due to the modifications on the global structural stiffness of the building. The maximum displacements and peak accelerations values were reduced when the effect of the masonry infills (structural stiffness) were considered in the dynamic analysis. Finally, it can be concluded that the human comfort evaluation of the sixteen-storey reinforced concrete building can be altered in a favourable way to design.

전달 강성계수법에 의한 격자형 구조물의 자유 진동 해석 (Free Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method)

  • 문덕홍;최명수;강화중
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.361-368
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful tool for structural analysis. However, it is necessary to use a large amount of computer memory and computation time because the FEM resuires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For overcoming this problem, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the nodal dynamic stiffness coefficient. And we confirmed the validity of TSCM through numerical computational and experimental results for a lattice type structure.

  • PDF

승용차 서브프레임용 고무부시의 동강성 예측 (Estimation of Dynamic Characteristics of a Rubber Component for Subframe in Automobile Vehicle)

  • 안태길;구준환;김주성;이용헌;김기주;최병익;이학주;우창수;김경식
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.907-914
    • /
    • 2010
  • While rubber components are extensively used in automobile vehicle, there are still a lot of difficulties in designing the rubber components applied in complex shapes and preloaded states because of the complicated material properties. In this paper, an efficient experimental method is suggested, which estimates the dynamic stiffness of a rubber component using rubber material test and static stiffness of the bush. And it is verified by comparing with FEM predictions and experimental results. This method is capable of predicting the dynamic stiffness of a rubber bush under various load conditions from minimized test data. Also it estimates dynamic characteristics of a rubber component using rubber material test and FEM calculation.

완충재 종류에 따른 중량바닥충격음 저감특성 평가 (A Study on the Heavy-weight Floor Impact Sound Reduction Evaluation of Characteristics by Resilient Materials)

  • 김경우;양관섭;정진연;임정빈;정갑철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1145-1148
    • /
    • 2007
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS (Styrofoam), recycled urethane types, EVA (Ethylene Vinylacetate) foam rubber, foam PE (Polyethylene), glass fiber & rock wool, recycled tire, foam polypropylene, compressed polyester, and other synthetic materials. In this study, we tested floor impact sound reduction characteristic to a lot of kinds of resilient material. The result of test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

  • PDF

Dynamic stiffness matrix of composite box beams

  • Kim, Nam-Il
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.473-497
    • /
    • 2009
  • For the spatially coupled free vibration analysis of composite box beams resting on elastic foundation under the axial force, the exact solutions are presented by using the power series method based on the homogeneous form of simultaneous ordinary differential equations. The general vibrational theory for the composite box beam with arbitrary lamination is developed by introducing Vlasov°Øs assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the dynamic stiffness matrix is calculated using force-displacement relationships. In addition, the finite element model based on the classical Hermitian interpolation polynomial is presented. To show the performances of the proposed dynamic stiffness matrix of composite box beam, the numerical solutions are presented and compared with the finite element solutions using the Hermitian beam elements and the results from other researchers. Particularly, the effects of the fiber orientation, the axial force, the elastic foundation, and the boundary condition on the vibrational behavior of composite box beam are investigated parametrically. Also the emphasis is given in showing the phenomenon of vibration mode change.