• Title/Summary/Keyword: dynamic stability region

Search Result 111, Processing Time 0.024 seconds

Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.359-368
    • /
    • 2018
  • This paper deals with the dynamic stability of nanocomposite pipes conveying pulsating ferrofluid. The pipe is reinforced by carbon nanotubes (CNTs) where the agglomeration of CNTs are considered based on Mori-Tanaka model. Due to the existence of CNTs and ferrofluid flow, the structure and fluid are subjected to axial magnetic field. Based on Navier-Stokes equation and considering the body forced induced by magnetic field, the external force of fluid to the pipe is derived. For mathematical modeling of the pipe, the first order shear deformation theory (FSDT) is used where the energy method and Hamilton's principle are used for obtaining the motion equations. Using harmonic differential quadrature method (HDQM) and Bolotin's method, the motion equations are solved for calculating the excitation frequency and dynamic instability region (DIR) of the structure. The influences of different parameters such as volume fraction and agglomeration of CNTs, magnetic field, structural damping, viscoelastic medium, fluid velocity and boundary conditions are shown on the DIR of the structure. Results show that with considering agglomeration of CNTs, the DIR shifts to the lower excitation frequencies. In addition, the DIR of the structure will be happened at higher excitation frequencies with increasing the magnetic field.

Static and Dynamic Optimal Shapes of Both Clamped Columns with Constant Volume (일정체적 양단고정 기둥의 정·동적 최적형상)

  • Lee, Byoung Koo;Kim, Suk Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.99-106
    • /
    • 2007
  • This paper deals with the static and dynamic optimal shapes of both clamped columns with constant volume. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are held constant. Numerical methods are developed for solving natural frequencies and buckling loads of columns subjected to an axial compressive load. Differential equations governing the free vibrations of such column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are presented in figures and tables.

Dynamic Instability of Lattice-Dome Structures by Lyapunov Concept

  • Han, Sang-Eul;Hou, Xiao-Wu
    • Architectural research
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • Stability is a very important part which we must consider in structural design. In this paper, we take advantage of finite element method to study parametrical instability of lattice dome structures, which is subjected to harmonically pulsating load. We consider elastic stiffness and geometrical stiffness simultaneously during the calculation of stiffness matrix, and adopt consistent mass matrix to make the solution more correct. In order to obtain instability regions, we represent displacements and accelerations in dynamic equation by trigonometric series expansions, and then obtain Hill's infinite determinants. After first order approximation, we can get first and second order dynamic instability regions eventually. Finally, we take 24-bar star dome and 90-bar lamella dome as examples to investigate dynamic instability phenomena.

A study on the dynamic characteristics of non-linear dynamic vibration absorber excited by harmonic ground motion (조화운동하는 기반상에서 작동하는 비선형 동흡진기의 동특성에 관한 연구)

  • 김광식;안찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.131-136
    • /
    • 1988
  • This study is a research on the dynamic characteristics of non-linear dynamic vibration absorber in which harmonic motion is applied to the foundation of the main system. The amplitude ratio of the system with non-linear dynamic vibration absorber was obtained by harmonic balance methods and the unstable region was determined by stability analysis. As a result of study, the amplitude ratio decreases as mass ratio increases.

Tracking Control for Biped Robot (이족 보행 로봇을 위한 추적 제어)

  • 이용권;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • In this paper, an optimal trunk trajectory for stable walking of biped robots is expressed as a simple differential equation, which is then solved by numerical methods. We used ZMP (Zero Moment Point), the virtual total ground reaction point within the region of the supporting food, as the criterion of stability of biped robot walking. If the ZMP is located outside of the stable region in dynamic walking, biped robots fall down. The biped robot considered in this paper consists of two legs and a trunk. The trajectories of the two legs and the ZMP of the biped robot are determined such that they are similar ti those of a human. Based upon those trajectories, the trunk trajectory is solved by numerically integrating differential dynamic equations. Leg motions are controlled by the computed torque control method. The effectiveness of control algorithm as well as the trajectories is confirmed by computer simulations.

  • PDF

A Spatial Stability of the Conductive Rod Conveyed by Double Electrodynamic Wheels (이중 동전기 휠에 의해 반송되는 도전성 환봉의 공간 안정성)

  • Jung, Kwang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.873-878
    • /
    • 2012
  • Putting a conductive rod between rotating axial electrodynamic wheels composed of repetitive permanent magnets, three-axial magnetic forces generate on the conductive rod. It is possible to levitate and transfer the rod on space with the forces. However, the forces vary in direction and magnitude for a position of the rod between the electrodynamic wheels. Thus, the position influences the stability of the rod also. To guarantee the stability of a levitated object, the force acting on the object should have negative stiffness like a spring. So, we analyze the stable operating range of the conductive rod levitated by the axial wheels with the commercial finite element tool in this paper. Specially, as the pole number and the radial width of permanent magnets has much influence on the generated force and thereby the stable region, their sensitivities are analyzed also. The analytic result is compared with experimental result.

A Study on Chatter Stability of High Speed Spindle (고속 스핀들의 채터 안정선도)

  • Shin, Seong-beom;Lee, Hyun-Hwa;Kim, Ji-S.;Kim, Ji-Yong;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.340-345
    • /
    • 2010
  • This paper presents the chatter stability lobes of high speed spindle of five-axis machine tools. Using a FEM, we obtained the frequency response function of a spindle and the stability lobes for evaluation of chatter. In addition, this paper suggest FRF using by FEM for the prediction of chatter stable region and critical cutting depth. Therefore, critical cutting depth of is 1.3586mm and X, Y direction's chatter frequency is 901Hz and 900Hz, respectively.

A Parametric Study on Combustion Stability Characteristics of Fuel-rich Gas Generators (설계 인자에 따른 연료 과농 가스발생기의 연소 안정성 특성 연구)

  • Ahn Kyu-Bok;Moon Il-Yoon;Seo Seong-Hyeon;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.171-176
    • /
    • 2006
  • An experimental study on a fuel-rich gas generator was carried out. Thirty seven double-swirl injectors with recess number of 1.5 were distributed and installed in the injector head, which significantly influences the combustion performance. In the paper, the characteristics of combustion stability are inspected by the parametric varations such as changing length and diameter of a combustion chamber and installing a turbulence ring. The experimental results show that as a resonant frequency took place in a high region, the amplitude of the dynamic pressure generally diminished, however, the combustion instability could not be suppressed perfectly.

  • PDF

Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic field

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.131-156
    • /
    • 2017
  • This paper deals with the dynamic stability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced micro cylindrical shells. The structure is subjected to harmonic non-uniform temperature distribution and 2D magnetic field. The CNT reinforcement is either uniformly distributed or FG along the thickness direction where the effective properties of nano-composite structure are estimated through Mixture low. The viscoelastic properties of structure are captured based on the Kelvin-Voigt theory. The surrounding viscoelastic medium is considered nonhomogeneous with the spring, orthotropic shear and damper constants. The material properties of cylindrical shell and the viscoelastic medium constants are assumed temperature-dependent. The first order shear deformation theory (FSDT) or Mindlin theory in conjunction with Hamilton's principle is utilized for deriving the motion equations where the size effects are considered based on Eringen's nonlocal theory. Based on differential quadrature (DQ) and Bolotin methods, the dynamic instability region (DIR) of structure is obtained for different boundary conditions. The effects of different parameters such as volume percent and distribution type of CNTs, mode number, viscoelastic medium type, temperature, boundary conditions, magnetic field, nonlocal parameter and structural damping constant are shown on the DIR of system. Numerical results indicate that the FGX distribution of CNTs is better than other considered cases. In addition, considering structural damping of system reduces the resonance frequency.

Study on Leading-phase Operation Capability of a 770 MW Jumbo Hydro-generator based on Stability Analysis and End-Region Heat Analysis

  • Fan, Zhen-nan;Zhou, Zhi-ting;Li, Jian-fu;Wen, Kun;Wang, Jun;Sun, Zhang;Wang, Tao;Yao, Bing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1317-1325
    • /
    • 2018
  • A generator-grid coupling calculation model is established to study the leading-phase operational capability of a 770 MW jumbo hydro-generator in a Chinese ultra-mega hydropower station. The static and dynamic stability of the generator are analyzed and calculated to obtain stability limits under leading-phase operating conditions. Three-dimensional (3D) time-varying nonlinear moving electromagnetic and temperature field models of the generator end-region are also established and used to determine the magnetic field, loss, and temperature of the end-region under the leading-phase operating condition. The simulation results agree with data measured from the actual 770 MW hydro-generator. This paper provides reliable reference data for the leading-phase operation of a jumbo hydro-generator, which will help to improve in the design and manufacture of future hydro-generators.