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Abstract 

 
  Stability is a very important part which we must consider in structural design. In this paper, we take advantage of finite element method to 

study parametrical instability of lattice dome structures, which is subjected to harmonically pulsating load. We consider elastic stiffness and 
geometrical stiffness simultaneously during the calculation of stiffness matrix, and adopt consistent mass matrix to make the solution more 
correct. In order to obtain instability regions, we represent displacements and accelerations in dynamic equation by trigonometric series 
expansions, and then obtain Hill’s infinite determinants. After first order approximation, we can get first and second order dynamic instability 
regions eventually. Finally, we take 24-bar star dome and 90-bar lamella dome as examples to investigate dynamic instability phenomena. 
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1. INTRODUCTION 
 

    Stability is a very important part we must consider in 
the design of large spatial structures, because lots of failures 
of these structures do not arise from the failure of material, 
but occur from the instability of structures. Therefore, it is 
very necessary to study their instability characteristics. 

  If the system is subjected to dynamic load or time 
dependent load, and these external loads appear in the 
equations of motion in the form of parameters, the system 
could be called parametrically excited systems. The 
instability relevant to these systems could be called 
parametrical instability. 

By now, several authors have studied on parametric 
instability phenomena. P. Nawrotzki (1997) analyzed the 
stability character of shell structures according to the 
definition of Lyapunov instability. L. Briseghella(1998) 
took advantage of finite element method to study dynamic 
instability of beams and frames. In his paper, the key to 
obtain instability regions is how to solve the so called 
Mathieu-Hill equation. T. Most (2004) studied the dynamic 
instability phenomena of non-linear shell structures under 
random loading. The core of his method is to calculate 
Lyapunov exponents, and then judge stability character 
through these exponents. Both Partha. Dey(2006) and G. Y. 
Wu(2006) studied the dynamic instability of plate structures 
under periodic in- plane force.  

All of above studies refer to the continuum, but there 
are little papers relevant to discrete structures. P. 
Nawrotzki(2000) studied dynamic instability characteristic 
of a two-bar truss. Thus, in this paper, we want to study 
dynamic instability phenomena of lattice dome structures, 
which can be considered as a more widely used discrete 
structure.  

In chapter 2, we will introduce how to build stiffness 
matrix and mass matrix. In chapter 3, we will also introduce 
the definition of Lyapunov stability firstly, and then induce 
Hill’s infinite determinants based on the equation of 
dynamic motion. By solving Hill’s infinite determinations, 

we can obtain instability regions finally. In chapter 4, we 
investigate the instability phenomena by two examples: 24-
bar star-dome and parallel lamella dome. 

 
2. STRUCTURAL STIFFNESS MATRIX AND MASS 
MATRIX 
 
2.1. STIFFNESS MATRIX  

 
As we know, lattice dome can be considered as space 

truss structure, and its structural stiffness can be divided 
into 2 parts, elastic stiffness and geometrical stiffness. The 
former depends on the properties of the structure such as 
elastic modulus 

 

 

Figure 1. Typical member i 

 

of the material E, the cross-sectional area of member A and 
so on. The latter depends on the external force. Apart from 
that, the arranging mode of the members also affects both of 
them. For a certain member i(as shown in Fig. 1), its elastic 
stiffness matrix can be formed as: 
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Where, M and N are beginning point and end point of the 

member i. 
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Here, xin )( , yin )( , zin )(  are directional cosines of the 
member. 
 

Geometrical stiffness matrix could be built as follows: 
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Where,  
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   Where, Fi - axial force of member i 

 

 

2.2. MASS MATRIX 

 
    There are two kinds of mass matrix used in FEM 
analysis: consistent mass matrix and lumped mass matrix.  

In consistent mass matrix, the mass of element is 
regarded to be distributed along the element, so for a one-
dimensional element, in order to build consistent mass 
matrix, we should assume shape functions. If the shape 
function is adopted as:   
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Thus, consistent mass matrix could be obtained 
correspondingly.  
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While in lumped mass matrix, the mass of element is 

regarded to be lumped at two end points. Because of high 
accuracy of the former, so we use consistent mass matrix in 
this paper. 

3. DYNAMIC INSTABILITY BY LYAPUNOV CONCEPT 
 

As shown in Fig. 2, dynamic instability by Lyapunov 
concept [1],[5] is defined as follows: Suppose )(tx∗  is a 
fundamental motion of system ),( txfx =

⋅
, and )(tx  is a 

neighboring motion of system. y(t)= )(tx - )(tx∗ , which can 
be called as perturbation or disturbance. Fundamental 
motion )(tx∗  is called stable by Lyapunov concept if and 
only if, for any given ε>0, there is a corresponding δ(ε)>0, 
such that for any initial perturbation δ<)( 0ty , one has 

ε<)(ty for all t. And if 0)(lim =
∞→

ty
t

, the fundamental  
motion )(tx∗  is called asymptotically stable.  

 

 

 

Figure 2. Dynamic stability by Lyapunov concept 

 

For a stable motion, perturbations are insignificant, the 
perturbed motion stays close to the unperturbed motion. On 
the contrary, infinitesimal perturbation could cause a 
considerable change of motion in unstable case.  

For nonlinear dynamic systems, Equation of motion 
should be represented in incremental form: 

 
 }{}]{[}]{[}]{[ PdKdCdM Δ=Δ+Δ+Δ

⋅⋅⋅
                  (7)  

                                          
If time interval is adopted to be small enough, then 

incremental force term ΔP is also very small, so it could be 
ignored, this is Lyapunov’s first approximation. 
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Here, we only consider the case of undamped system 

(C=0): 
 

0}]{[}]{[ =Δ+Δ
⋅⋅

dKdM                            (9)     

                                                  

Where, tKKKK GDGSE Ω⋅++= cos  
KE - elastic stiffness 
KGS - geometrical stiffness caused by time-

invariant load PS 
KGD - geometrical stiffness caused by time-

dependent load PD 
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Equation (9) is a Mathieu equation. In order to obtain 
the instability regions, displacement term should be 
represented by trigonometric series expansions: 
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And then, incremental acceleration could be obtained 

by differentiating above equations.  
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Next, we substitute these two trigonometric series into 

Equation (9), two systems of equations for period T and 
period 2T could be obtained respectively. For non-trivial 
solutions of ak and bk, Hill’s infinite determinants should be 
zero. 

 
Period 2T:  
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However, all above determinants are of infinite order. 

Here, we only consider their first-order approximation, 
which has been demonstrated to be a good approximation. 
That is to say, we only solve the following simplified 
eigenvalue problems. The calculation procedure is shown as 
fig. 3. 
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4. NUMERICAL EXAMPLE 
 
4.1. 24-BAR STAR DOME 
 

 

Figure 4. 24-bar star-dome (dimension: mm) 
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Figure 3. Flow chart for the calculation of instability regions 

 

 

 

 
4.1.1. BASIC PARAMETERS 
 

As shown in Fig. 4, the analytical model in this section 
is 24-bar star dome. As we know, when the star dome is 
loaded, it appears strong geometrical nonlinearity, and there 
exist bifurcation buckling phenomenon, which has been 
studied by lots of authors. But in this paper, we only study 
the dynamic instability character of this structure. It is 
excited by a harmonically pulsating load tPPtP DS Ω⋅+= cos)( . 
Here, PS term is time-invariant, and tPD Ω⋅cos  term is 
harmonically time-dependent.  EA is constant for all the 
members with 91003.3 ×=E pa and 241017.3 mA −×= . 

 

4.1.2. MODAL ANALYSIS OF STAR-DOME 
 

On the base of elastic stiffness matrix and mass matrix 
explained in chapter 2, we can obtain the natural 
frequencies and mode shapes of star- dome by FEA method. 
And modal participation factor [11] of the r-th mode can be 
calculated by Equation (18). The results are shown in table 
1 and Fig. 5. 
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According to table 1 and Fig. 5, we can know 1st 
mode shape and 7th mode shape play dominating roles 
under these two conditions. However, there are also some 
differences: in the first condition, the ratio of two modal 
participation factors 30/ 71 =ΓΓ , so we can regard that only 
1st mode shape affects the response of the structure 
approximately. On the contrary, the ratio of two modal 
participation factors in the second condition 26.1/ 71 −=ΓΓ , so 
we couldn’t neglect the effect of 7th mode shape. 
 

 

Table 1. Modal participation factors of major modes 

Modal participation factor 

Mode shape Load at central 

point 

Load at all free 

points 

1(ω1=41.57) 3.6*10-3 2.9*10-3 

4(ω4=75.71) 7.4*10-8 -1.5*10-6 

7(ω7=78.97) 1.2*10-4 -2.3*10-3 

11(ω11=364.94) 2.7*10-10 5.1*10-10 

3.1*10-6 -7.4*10-6 14(ω14=460.11) 

17(ω17=654.27) 8.4*10-12         -3.8*10-11 

 

 

 

 

 

 

Figure. 5. Modal participation factor 

Input geometrical parameters 

Input load parameters 

Calculate M, KE, KGS 

Calculate KGD 

Solve equation (15), (16) and (17), 

Obtain the instability regions 

PD<PD, MAX 

Increase PD 

Plot chart of instability regions 



Dynamic Instability of Lattice-Dome Structures by Lyapunov Concept 29

4.1.3. CRITICAL LOAD OF STAR-DOME 
 

In order to obtain the critical load, we should get the 
load-displacement curve of star- dome in advance. Here, 
the load is linearly increased. We can get the curve as 
shown in Fig. 6 by taking advantage of Newton-Raphson 
method.  

 

 

 

 

Figure 6. Load-displacement curve of Star- dome  

 

 
4.1.4. INSTABILITY REGIONS 
 

By solving above three equations (15), (16) and (17), 
we can obtain the first and second instability regions as 
shown in Fig. 7. The response curves of points in and out of 
the instability region are shown in Fig. 8.  
 

 

 

 

 

Figure 7. First and second instability regions 

 
(a) Response of point in instability region  

 

(b) Response of point in stability region  

 

 Figure 8. Dynamic response curves   

 

In Fig.7, the data in x-axis denotes the value of 
external frequency, while that in y-axis denotes the value of 
PD. These two values composite a point, if it is in the 
instability region, it means that the force with this amplitude 
and frequency will excite instability phenomenon. 

 
4.2 PARALLEL LAMELLA DOME 

 

 

 

Figure 9. Parallel lamella dome (dimension: mm) 
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4.2.1. BASIC PARAMETERS 
 

As shown in Fig. 9, the span of parallel lamella dome is 
1.2m, and rise-span ration is 0.15. Elastic module is 

91003.3 ×=E pa, and sectional areas of members are 
shown in table 2 and Fig. 10. Loading pattern is shown in 
Fig. 11. 

 
Table 2. Sectional areas of members 

member Area(m2) 

A 2.34*10-6 

B 3.93*10-6 

C 5.95*10-6 

D 7.07*10-6 

E 1.57*10-5 

F 2.20*10-5 

 

 

 

 

 

 

 Figure 10. Distribution of Members 

 

 

 
 

Figure 11.  Loading pattern 

4.2.2. MODAL ANALYSIS 
 

Firstly, we take advantage of FEA method to calculate 
natural frequencies and corresponding mode shapes, and 
then we use the method shown in section 4.1.2 to obtain 
modal participation factors of each mode. Major ones of 
them are shown in table 3. 

Different from example 4.1, where the 1st mode shape 
is the dominating one, but in example 4.2, the dominating 
mode shapes are the 8th, 9th, 18th and 19th mode shapes. 

 
 

Table 3.  Modal participation factors of major modes 

Number of 

mode 

Frequency(Hz) Modal 

Participation 

factor 

9 470.20 0.037 

10 489.01 0.009 

18 558.53 -0.006 

19 721.45 0.010 

 

 
4.2.3. CRITICAL LOAD Pcr 
 

 As narrated in the above section, we obtain load-
displacement curve (as shown in Fig. 12) by taking 
advantage of Newton-Raphson method. From Fig. 12, we 
can know that the critical load is about 602N easily. 
 

 

 

 

 

Figure 12. Load-displacement curve of lattice dome 
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4.2.4. INSTABILITY REGIONS 

 

Different from example 4.1, where the 1st mode shape 
is the dominating one, but in example 4.2, the dominating 
mode shapes are the 8th, 9th, 18th and 19th mode shapes. 

Here, we take the 19th mode shape as example, and 
analyze the instability regions of the lamella parallel dome. 

By solving Equation (15), (16) and (17), we can obtain 
the first and second instability regions, as shown in Fig. 13. 
From this figure, we can know that the frequency in 1st 
instability region is about twice of its natural frequency, 
which is the same with the results of other persons’ studies. 

Response curves of points in and out of the instability 
region are shown in Fig. 14. 

 
 
 
 

 

 

Figure 13. First and second instability regions 

 

 

 

 

 
 

(a) Displacement of point in instability region 

 
 

(b) Displacement of point out of instability region 

 

Figure 14. Response curves in and out of the instability regions 

 
 
5. CONCLUSION 
 

In this paper, dynamic instability behavior of lattice 
dome structure under harmonically pulsating load was 
studied by making use of finite element method. When 
calculating structural stiffness, we have considered the 
geometrical nonlinear properties of this structure, and then 
we obtain the load-displacement curve and the critical load 
in static state by Newton-Raphson method. Finally, through 
solving first-order approximation of Hill’s infinite 
determinants, we obtain dynamic instability regions.  

Two numerical examples have been analyzed in this 
paper. For 24-bar star dome, the 1st mode shape is the 
dominating one. By taking advantage of the method shown 
in this paper, we can get its first and second instability 
regions. However, for parallel lamella dome, the 8th, 9th, 18th 
and 19th mode shapes play more important role than the 1st 

one. Therefore, we should calculate instability regions for 
these mode shapes rather than the 1st one. 

In this paper, we only consider the dynamic instability 
phenomenon under the harmonically pulsating load. 
Dynamic instability phenomenon should also exist in some 
other conditions, such as sudden step loads and other 
arbitrary time-dependent loads. It will be the issue which 
we will study in the future. 
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