컴퓨터 비전 분야에서 전경을 추출하기 위한 영역 분할(segmentation) 방법에 대한 연구가 활발히 진행되어 왔다. 특히, 전경이 배제된 배경 영상과 현재 프레임의 차이를 이용하여 전경을 추출하는 배경 차분(background subtraction) 방법은 요구하는 계산량에 비해 우수한 품질의 전경 추출이 가능하므로 실시간 처리가 필요한 비전 시스템에 다양하게 응용되고 있다. 그러나 배경 차분 방법만을 이용하여서는 배경이 동적으로 변하는 환경에서 정확한 전경을 추출해 내지 못하는 단점이 있다. 본 논문에서는 정적인 배경과 동적인 배경이 공존하는 환경에서 영역 분할을 효과적으로 수행하는 방법을 제안한다. 제안된 방법은 정적인 배경 영역에 대해서는 기존의 배경 차분 방법을 이용하여 전경을 추출하고, 동적인 배경 영역에 대해서는 깊이 정보를 이용하여 전경을 추출하는 하이브리드 방식을 사용한다. 정적인 배경에 동적인 영상을 프로젝터로 투영하는 환경에서 제안된 방법의 효율성을 검증하였다.
MPEG-4는 객체의 삽입/삭제/교체 또는 객체의 속성 변경을 통하여 동적인 장면 구성을 지원한다. 기존의 MPEG-4 재생기들은 MPEG-4 표준에 따라 멀티미디어 데이타를 전송하고 재생하는데 치중하여 MPEG-4의 특징인 다양한 객체의 지원이나 동적인 장면 구성의 지원이 미흡했다 본 논문에서는 MPEG-4 재생기의 핵심 구성요소인 효율적인 장면 구성기를 제안한다. 장면 구성기는 장면 그래프를 효율적으로 탐색하고, 자료구조를 생성하여 객체 정보를 그 특성에 맞게 관리하며, 상호작용 처리 능력을 향상시킨 최적의 처리기이다. 장면 구성기는 장면 기술 정보를 충분히 지원하며, 구성요소 확장과 모바일 환경에 적용하기 위해 재생기에서 독립적으로 관리된다.
Radiosity method is a global illumination model for image synthesis. It computes all energy interactions among diffuse elements in a virtual environment. One of the major drawbacks if its time consuming computation. Existing radiosity algorithms for static scene is difficult to be applicable to dynamic environments. In this paper we proposed an hierarchical scene partition scheme to speedup the link update computations in the dynamic environments. Since the proposed spatial data structure is global, it not only can be used to speedup the culling of non-affected links after geometry change, but also can be used to accelerate the subsequent visibility computation. Several empirical tests are given to show the efficiency of our improved algorithm.
Recently, many vision-based navigation methods have been introduced as an intelligent robot application. However, many of these methods mainly focus on finding an image in the database corresponding to a query image. Thus, if the environment changes, for example, objects moving in the environment, a robot is unlikely to find consistent corresponding points with one of the database images. To solve these problems, we propose a novel navigation strategy which uses fast motion estimation and a practical scene recognition scheme preparing the kidnapping problem, which is defined as the problem of re-localizing a mobile robot after it is undergone an unknown motion or visual occlusion. This algorithm is based on motion estimation by a camera to plan the next movement of a robot and an efficient outlier rejection algorithm for scene recognition. Experimental results demonstrate the capability of the vision-based autonomous navigation against dynamic environments.
We propose a DP-based formulation for matching line patterns by defining a robust and stable geometric representation that is based on the conceptual organizations. Usually, the endpoint proximity and collinearity of image lines, as two main conceptual organization groups, are useful cues to match the model shape in the scene. As the endpoint proximity, we detect junctions from image lines. We then search for junction groups by using geometric constraint between the junctions. A junction chain similar to the model chain is searched in the scene, based on a local comparison. A Dynamic Programming-based search algorithm reduces the time complexity for the search of the model chain in the scene. Our system can find a reasonable matching, although there exist severely distorted objects in the scene. We demonstrate the feasibility of the DP-based matching method using both synthetic and real images.
It is needed many images with different exposure to acquire high dynamic range (HDR) image of a scene using digital still camera. This paper proposed to acquire HDR image with small error using reduced number of image. Proposed method takes two pictures with different exposure and estimates dynamic range of scene using information two images, and takes three pictures with calculated proper exposure to acquire HDR image.
Video composition is to integrate multiple image materials into one scene. It considerably enhances the degree of freedom in producing various scenes. However, we need to adjust the viewing point sand the image planes of image planes of image materials for high quality video composition. In this paper, were propose an intelligent video composition technique concentrating on the composition of CG and real scene. We first model the camera system. The projection is assumed to be perspective and the camera motion is assumed to be 3D rotational and 3D translational. Then, we automatically extract camera parameters comprising the camera model from real scene by a dedicated algorithm. After that, CG scene is generated according to the camera parameters of the real scene. Finally the two are composed into one scene. Experimental results justify the validity of the proposed method.
In this paper, we propose the dynamic scene segmentation algorithm using a cross mask and edge information. This method, a combination of the conventioanl feature-based and pixel-based approaches, uses edges as features and determines moving pixels, with a cross mask centered on each edge pixel, by computing similarity measure between two consecutive image frames. With simple calcualtion the proposed method works well for image consisting of complex background or several moving objects. Also this method works satisfactorily in case of rotaitional motion.
One of the challenging problems in dynamic scene analysis is the correspondence problem. Points and lines have been two major entities for establishing the correspondence among suxcessive frmes and gave rise to discrete approach to dynamic scene analysis. SOme researchers take continuous approach to analyse the motion. There it is usually assumed that some sort of region correspondence has already been established. In this paper, we propose a method based on fuzzy membership function for solving region correspondence problem.
내용기반 검색을 위한 비디오 데이터 장면전환 검출에서 점진적인 전환을 검출하는 것은 갑작스런 전환을 검출하는 것에 비해 일반적으로 어려운 문제로 알려져 있다. 본 논문에서는 가변형 동적 임계값과 가장 최근에 검출된 컷 프레임과 현재 프레임간의 특징값 차이인 컷 프레임 차를 이용하여 갑작스런 전환과 점진적인 전환을 찾아내는 기법을 제안한다. 이를 위하여 본 논문에서는 점진적인 전환이 갖는 특성과 수학적 모델을 제시하고 컷 프레임 차를 이용하여 점진적인 전환을 검출할 수 있음을 보인다. 그리고 이를 바탕으로 갑작스런 전환과 점진적인 전환을 함께 검출할 수 있는 방법을 제시한다. 실세계 동영상 데이터를 대상으로 한 실험을 통해 제안하는 기법이 점진적인 전환 효과의 종류에 종속적이지 않으며 적은 연산 비용으로 쉽게 점진적인 전환 유무를 검출 할 수 있음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.