• Title/Summary/Keyword: dynamic modification

Search Result 489, Processing Time 0.028 seconds

Seismic response modification factors for stiffness degrading soil-structure systems

  • Ganjavi, Behnoud;Bararnia, Majid;Hajirasouliha, Iman
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.159-170
    • /
    • 2018
  • This paper aims to develop response modification factors for stiffness degrading structures by incorporating soil-structure interaction effects. A comprehensive parametric study is conducted to investigate the effects of key SSI parameters, natural period of vibration, ductility demand and hysteretic behavior on the response modification factor of soil-structure systems. The nonlinear dynamic response of 6300 soil-structure systems are studied under two ensembles of accelograms including 20 recorded and 7 synthetic ground motions. It is concluded that neglecting the stiffness degradation of structures can results in up to 22% underestimation of inelastic strength demands in soil-structure systems, leading to an unexpected high level of ductility demand in the structures located on soft soil. Nonlinear regression analyses are then performed to derive a simplified expression for estimating ductility-dependent response modification factors for stiffness degrading soil-structure systems. The adequacy of the proposed expression is investigated through sensitivity analyses on nonlinear soil-structure systems under seven synthetic spectrum compatible earthquake ground motions. A good agreement is observed between the results of the predicted and the target ductility demands, demonstrating the adequacy of the expression proposed in this study to estimate the inelastic demands of SSI systems with stiffness degrading structures. It is observed that the maximum differences between the target and average target ductility demands was 15%, which is considered acceptable for practical design purposes.

Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications (위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

Evaluation of Seismic Performance Factors of Diagrid Structural System (다이아그리드 구조 시스템의 내진성능계수 평가)

  • Kim, Kyoung-Hwan;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.229-239
    • /
    • 2010
  • As a new structural system, the diagrid system resists both gravity and lateral loads with diagonal columns. In current seismic design provisions, however, the response modification factor for a new structural system is not provided yet. ATC-63 provides a new methodology for defining various seismic performance factors, including the response modification factor. ATC-63 includes the collapse margin ratio in modifying the response modification factor, which can vary with many structural systems. In this paper, a non-linear static analysis and a dynamic analysis were conducted for four different diagrid models with 4-to 36-story heights. From these analyses, the response modification factor of the diagrid system was evaluated.

Effects of Fiber Surface Modification on the Flow Characteristics and Wettability in the Resin Transfer Molding Process (섬유의 표면개질이 수지이동 성형공정에서의 유동특성 및 젖음성에 미치는 영향)

  • 김세현;이건웅;이종훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.34-43
    • /
    • 1999
  • Flow-induced voids during resin impregnation and poor fiber wetting have known to be highly detrimental to the performance of composite parts manufactured by resin transfer molding(RTM) process. In this study, in order to overcome these serious problems encountered in RTM, the effects of surface modification by using silane coupling agent as a surface modifier on the flow characteristics, the wetting between resin and fiber, and void content were investigated. For the experiments of microscopic flow visualization and curing in a beam mold, glass fiber mats having plain weaving structure and epoxy resin were used. Modifying the fiber surface was found to result in a significant decrease of dynamic contact angle between resin and fiber and increase of wicking rate. Therefore, it was confirmed that the surface modification employed in this study could improve the wettability of reinforcing fibers as well as micro flow behavior. In addition, It was revealed that high temperature and low penetration rate of the resin are more favorable processing conditions to reduce the dynamic contact angle. However, surface modified fiber mat was found to have lower permeability than the unmodified one, which may be explained in terms of the decrease of contact time between resin and fiber owing to improvement of wetting. It was also exhibited that surface modification had a significant influence on void formation in RTM process, resulting in a decrease of overall void content due to the improvement of wetting in cured composite parts.

  • PDF

Three Dimensional Modeling and Inverse Dynamic Analysis of An Excavator (굴삭기의 3차원 모델링 및 역동역학 해석)

  • 김외조;유완석;이만형;윤경화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2043-2050
    • /
    • 1993
  • This paper presents a three dimensional modeling and dynamic analysis of a hydraulic excavator. An excavator composed of a boom, a bucket, two boom cylinders, an arm cylinder, and a bucket cylinder is used for the analysis. Each cylinder is modeled to two separate bodies linked by a translational joint. Judging from the actual degrees of freedom of the excavator, proper kinematic joints are selected to exclude redundant constraints in the modeling. In order to find the reaction forces at kinematic joints during operations, inverse dynamic analysis is carried out. Dynamic analysis is also carried out to verify the results from inverse dynamic analysis. The DADS program is used for analysis, with proper modification of the DADS user routine according to various motions.

Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness (기어이의 변동물림강성을 고려한 비틀림진동해석)

  • Ryu, Jae-Wan;Han, Dong-Chul;Choi, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

A study on the Evaluation for the Static and Dynamic stiffness of a Machining Center (머시닝 센터의 정${\cdot}$동강성 평가에 관한 연구)

  • Lee Choon Man;Park Dong Gun;Lim Sang Heon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.294-299
    • /
    • 2005
  • A machining center is a complex dynamic system whose behavior influences the machining stability and machined surface quality. This paper focused on establishment of a measurement system and experimental study on static, dynamic, and modal analysis of a machining center. The dynamic stiffness result by the analysis showed the weak part of the machining center. The results provided structure modification data for getting better dynamic behaviors.

  • PDF

A case study in the dynamic characteristic of a test rig for a high-speed motor (고속 BLDC 전동기를 위한 시험설비의 구조적 동특성에 관한 연구)

  • Park, Chul-Jun;Lee, Sung-Wuk;Park, Young-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.641-645
    • /
    • 2008
  • In this paper, vibration sources of the BLOC motor are identified and the motor vibrations are reduced by structural modification. For vibration characteristic identification, vibration signals measured by an accelerometer when the BLOC motor is moving. These signals are presented in a waterfall plot in order to find the dependency of frequency components on the motor speed. It is found that main vibration source is BLOC motor test rig. From finite element analyses and some experiments, it is also found that resonances occur because the natural frequencies of the test rig exist in usual driving speed rang. To shift the natural frequencies outside the driving rang, the test rig is modified increase stiffness. It is verified that considerable amount of vibration are reduced by the structural modification.

  • PDF

Seismic Behavior Factors of RC Staggered Wall Buildings

  • Kim, Jinkoo;Jun, Yong;Kang, Hyunkoo
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.355-371
    • /
    • 2016
  • In this study seismic performance of reinforced concrete staggered wall system structures were investigated and their behavior factors such as overstrength factors, ductility factors, and the response modification factors were evaluated from the overstrength and ductility factors. To this end, 5, 9, 15, and 25-story staggered wall system (SWS) structures were designed and were analyzed by nonlinear static and dynamic analyses to obtain their nonlinear force-displacement relationships. The response modification factors were computed based on the overstrength and the ductility capacities obtained from capacity envelopes. The analysis results showed that the 5- and 9-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15- and 25-story structures plastic hinges were more widely distributed throughout the stories. The computed response modification factors increased as the number of stories decreased, and the mean value turned out to be larger than the value specified in the design code.