• Title/Summary/Keyword: dynamic modal analysis

Search Result 933, Processing Time 0.03 seconds

Dynamic characteristic change of a PSC girder due to fatigue (피로에 따른 PSC거더의 동적특성 변화)

  • Choi, Sang-Hyun;Lee, Chang-Soo;Shin, Ki-Hoon;Kim, Tae-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1533-1538
    • /
    • 2011
  • The dynamic characteristics such as resonant frequencies and dampings have been utilized as important parameters in dynamic behavior and inverse analyses. In general, the dynamic parameters have been determined based on design and experimental data, but experimental studies on the time-dependent changes of the dynamic parameters during service have rarely been conducted. Especially, unlike highway bridges, it is much easier for railroad bridges to estimate accumulated amount of fatigue because of the controlled train operation, and the study of dynamic characteristic change due to fatigue is useful, since it can enhance the accuracy of dynamic analysis. In this paper, the dynamic characteristic change due to fatigue is measured via the modal test on the PSC girder during a fatigue test. The test specimen utilized in the test is the IT girder which enhances the sectional capacity of the conventional PSC girders. The test specimen is designed 10m long and the modal tests are conducted during the application of fatigue load two million times. The test result shows that considerable changes in the measured dynamic parameters are observed as the fatigue accumulates, and these changes during the service life should be considered in designing railroad bridges.

  • PDF

Development of Composite Optical Bench for Earth observation Satellite (복합재료를 사용한 지구관측위성 광학탑재체 지지구조물 개발)

  • Kim, Jin-Hee;Kim, Kyung-Won;Lee, Ju-Hun;Jin, Ik-Min;Yoon, Gil-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.207-210
    • /
    • 2005
  • In this paper, technical issues for an optical bench of high precision LEO Earth observation satellite are described. The optical bench should be stable for thermal and dynamic environment. In this point of view, an intermediate type of optical bench is developed. Thermal deformation analysis and modal analysis are performed for two types of FE model. Modal test are performed to verify the analysis results. The test results fit well the analysis results.

  • PDF

Dynamic characteristics analysis of wind-power generator rotor- bearing system (풍력발전 시스템용 유도발전기의 동특성 해석)

  • 정순철;김덕수;이재응;고장욱;차종환;오시덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1032-1039
    • /
    • 2001
  • In this paper, modal analysis of wind-power generator rotor system was performed by using finite element method. Experimental modal analysis of generator rotor system was performed and the result were compared with analytical ones. Sensitivity method and localized modification method were used to update finite element model. As a result of updating finite element model, errors of natural freguency were reduced within 0.5% and MAC value was improved near by l. Stability characteristics of wind-power generator rotor-bearing system through harmonic analysis about several external force will be analyzed using finite element model.

  • PDF

Dynamic response of railway bridges traversed simultaneously by opposing moving trains

  • Rezvani, Mohammad Ali;Vesali, Farzad;Eghbali, Atefeh
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.713-734
    • /
    • 2013
  • Bridges are vital components of the railroads. High speed of travel, the periodic and oscillatory nature of the loads and the comparable vehicle bridge weight ratio distinguish the railway bridges from the road bridges. The close proximity between estimations by some numerical methods and the measured data for the bridge-vehicle dynamic response under the moving load conditions has boosted the confidence in the numerical analyses. However, there is hardly any report regarding the responses of the railway bridges under the effect of the trains entering from the opposite directions while running at unequal speed and having dissimilar geometries. It is the purpose of this article to present an analytical method for the dynamic analysis of the railway bridges under the influence of two opposing series of moving loads. The bridge structural damping and many modes of vibrations are included. The concept of modal superposition is used to solve for the system motion equations. The method of solution is indeed a computer assisted analytical solution. It solves for the system motion equations and gives output in terms of the bridge deflection. Some case studies are also considered for the validation of the proposed method. Furthermore, the effects of varying some parameters such as the distance between the bogies, and the bogie wheelset distance are studied. Also, the conditions of resonance and cancellation in the dynamic response for a variety of vehicle-bridge specifications are investigated.

Effects of a drawbar and a rotor in dynamic characteristics of a high-speed spindle (드로우바와 로터가 고속주축계의 동적 특성에 미치는 영향)

  • Chung Won-Jee;Lee Choon-Man;Lee Jung-Hwan;Lim Jeong-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.139-146
    • /
    • 2006
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. For more quantitative analysis of a built-in motor's dynamic characteristics, that of tile mass and stillness effects are considered. And the drawbar in the spindle can be in various condition according to supporting stiffness between drawbar and shaft. Therefore, in this paper following items are performed and analyzed : 1. Modal characteristics of the spindle. 2. Analysis of rotor's mass and stiffness effects. 3. Modal characteristics of the spindle including drawbar, rotor and tool. The results show enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of the spindle, and considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

The Effects of Measurement Errors on Frequency Response Functions(FRFs) (실험 오차가 주파수 응답함수에 미치는 영향)

  • Jung, Hae-Il
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Despite the highly sophisticated development of finite element analysis, a finite element model for structural dynamic analysis can be inaccurate or even incorrect due to the difficulties of correct modelling, uncertainties on the finite element input data and geometrical oversimplification, while the modal data extracted from measurement are supposed to be correct, even though incomplete. The assumption that the test results represent the true dynamic behaviour of the structure, however, may not be correct because of various measurement errors. The measurement errors are investigated and their effects on estimated frequency response functions(FRFs) are also investigated.

  • PDF

Study of ball bearing fatigue damage using vibration analysis: application to thrust ball bearings

  • Yessine, Toumi M.;Fabrice, Bolaers;Fabien, Bogard;Sebastien, Murer
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.325-336
    • /
    • 2015
  • This paper presents a study based on the damage due to the fatigue life of thrust ball bearings using vibratory analysis. The main contribution of this work lies in establishing a relation between modal damping and the rolling contact fatigue damage of the thrust ball bearing. Time domain signals and frequency spectra are extracted from both static and dynamic experiments. The first part of this research consists in measuring the damping of damaged thrust ball bearings using impact hammer characterization tests. In a second part, indented components representing spalled bearings are studied to determine the evolution of damping values in real-time vibration spectra using the random decrement method. Dynamic results, in good agreement with static tests, show that damping varies depending on the component's damage state. Therefore, the method detailed in this work will offer a possible technique to estimate the thrust ball bearing fatigue damage variation in presence of spalling.

MPA-based IDA Using the Inelastic Displacement ratio, CR and the Collapse Intensity, RC (비탄성변위비와 붕괴강도비를 이용한 MPA기반의 IDA 해석법)

  • Han, Sang-Whan;Seok, Seung-Wook;Lee, Tae-Sub
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.33-39
    • /
    • 2010
  • This study develops an approximate procedure for incremental dynamic analysis (IDA) using modal pushover analysis (MPA) with empirical equations of the inelastic displacement ratio ($C_R$) and the collapse strength ratio ($R_C$). By using this procedure, it is not required to conduct linear or nonlinear response history analyses of multi- or single- degree of freedom (MDF) systems. Thus, IDA curves can be effortlessly obtained. For verification of the proposed procedure, the 6-, 9- and 20-story steel moment frames are tested under an ensemble of 44 ground motions. The results show that the MPA-based IDA with empirical equations of $C_R$ and $R_C$ produced accurate IDA curves of the MDF systems. The computing time is almost negligible compared to the exact IDA using repeated nonlinear response history analysis (RHA) of a structure and the original MPA-based IDA using repeated nonlinear RHA of modal SDF systems.

Running Mode Analysis of Exacvator Upper Frame (ODS를 이용한 굴삭기 상부프레임 진동 해석)

  • 김원영;전범석;박경철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.358-363
    • /
    • 1997
  • The Operational Deflection Shape designates the motion pattern by which a structure vibrates under a specific operating condition. Modal Analysis is usually tested under test bench, but Operational Deflection Shape can be measured directly under real operating condition. It provide useful information for trouble-shooting and aid understanding and evaluation of the absolute dynamic behaviour of a machine or component. In this paper, It is analysed Excavator Upper Frame using Operating Deflection Shape.

  • PDF