• Title/Summary/Keyword: dynamic mechanical analysis

Search Result 2,624, Processing Time 0.03 seconds

Nonlinear large deformation dynamic analysis of electroactive polymer actuators

  • Moghadam, Amir Ali Amiri;Kouzani, Abbas;Zamani, Reza;Magniez, Kevin;Kaynak, Akif
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1601-1623
    • /
    • 2015
  • Electroactive polymers have attracted considerable attention in recent years due to their sensing and actuating properties which make them a material of choice for a wide range of applications including sensors, biomimetic robots, and biomedical micro devices. This paper presents an effective modeling strategy for nonlinear large deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. Considering that the complicated electro-chemo-mechanical dynamics of these actuators is a drawback for their application in functional devices, establishing a mathematical model which can effectively predict the actuator's dynamic behavior can be of paramount importance. To effectively predict the actuator's dynamic behavior, a comprehensive mathematical model is proposed correlating the input voltage and the output bending displacement of polymer actuators. The proposed model, which is based on the rigid finite element (RFE) method, consists of two parts, namely electrical and mechanical models. The former is comprised of a ladder network of discrete resistive-capacitive components similar to the network used to model transmission lines, while the latter describes the actuator as a system of rigid links connected by spring-damping elements (sdes). Both electrical and mechanical components are validated through experimental results.

A New Approach for the Analysis Solution of Dynamic Systems Containing Fractional Derivative

  • Hong Dong-Pyo;Kim Young-Moon;Wang Ji Zeng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.658-667
    • /
    • 2006
  • Fractional derivative models, which are used to describe the viscoelastic behavior of material, have received considerable attention. Thus it is necessary to put forward the analysis solutions of dynamic systems containing a fractional derivative. Although previously reported such kind of fractional calculus-based constitutive models, it only handles the particularity of rational number in part, has great limitation by reason of only handling with particular rational number field. Simultaneously, the former study has great unreliability by reason of using the complementary error function which can't ensure uniform real number. In this paper, a new approach is proposed for an analytical scheme for dynamic system of a spring-mass-damper system of single-degree of freedom under general forcing conditions, whose damping is described by a fractional derivative of the order $0<{\alpha}<1$ which can be both irrational number and rational number. The new approach combines the fractional Green's function and Laplace transform of fractional derivative. Analytical examples of dynamic system under general forcing conditions obtained by means of this approach verify the feasibility very well with much higher reliability and universality.

An Experimental Investigation on the Dynamic Behavior of an Air Lubricated Tilting Pad Journal Bearing (공기윤활 틸팅패드 저어널 베어링의 동적거동에 관한 실험적 연구)

  • Hwang, Pyung;Kwon, Sung-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.325-330
    • /
    • 1999
  • The dynamic behavior analysis of air-lubricated tilting pad journal bearing which considers start-up, running and shutdown Process were performed. By carrying out the experiment of shaft vibration, measurement of the vibration amplitudes supported by air lubricated tilting pad bearing and analysis of the result, we found more accurate dynamic behavior of the system. There were many investigations in these bearings, but dynamic behavior of startup, shutdown and running process were lacked. By using the experimental data we found the accurate dynamic behavior of the system.

  • PDF

A FEM Analysis of Dynamic Behavior for a Slider with Ultra-Thin Air-Film

  • Lim, S.K.;Rhim, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.243-244
    • /
    • 2002
  • New type slider with optical components is coming on market for portable and high capacity drive, and it shows great potential in future high performance drive. It is very important that a slider should have a good dynamic behavior. In this paper the dynamic behavior and static characteristics of slider have been investigated numerically by in-house simulation code using FEM.

  • PDF

Analysis of Hot Forming Process with Flow Softening by Dynamic Recrystallization (동적 재결정에 의한 연화를 고려한 열간성험공정 해석)

  • 방원규;이종수;장영원
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.137-143
    • /
    • 2001
  • The change of flow stress due to dynamic recrystallization during hot forming process is investigated. A series of mechanical tests has been conducted at various temperatures, and constitutive relations and recrystallization kinetics were formulated from the test results. The effect of dynamic recrystallization to the flow stress was implemented to a commercial FEM code by conditioned remapping of state variables. The datum strain of stress compensation was optimized to minimize the overestimation of forming loads. Suggested datum was formulated as an exclusive function of critical strain for recrystallizalion and validated by mechanical tests and microstructural observations.

  • PDF

Dynamic Modeling of 2 DOF Parallel Manipulator (2 자유도 병렬 메니퓰레이터의 동적 모델링)

  • Lee, Jong Gyu;Lee, Sang Ryong;Lee, Choon Young;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.897-904
    • /
    • 2014
  • In this paper, two-DOF parallel manipulator has the sliders which execute a linear reciprocating motion depending on parallel guides and the end-effector which can be adjusted arbitrarily. To investigate the dynamic characteristics of the manipulator, the dynamic performance index is used. The index is able to be obtained by the relation between the Jacobian matrix and the inertia matrix. The kinematic and the dynamic analysis find these matrices. Also, the dynamic model of the manipulator is derived from the Lagrange formula. This model represents complicated nonlinear equations of motion. With the simulation results of the dynamic characteristic of the manipulator, we find that the dynamic performance index is based on the selection of the ranges for the continuous movement of the manipulator and the dynamic model derived can be used to the control algorithm development of the manipulator.

Dynamic analysis of constrained multibody systems using Kane's method (케인방법을 이용한 구속 다물체계의 동역학 해석)

  • Park, Jeong-Hun;Yu, Hong-Hui;Hwang, Yo-Ha;Bae, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2156-2164
    • /
    • 1997
  • A new formulation for the dynamic analysis of constrained multibody systems is presented in this paper. The formulation employs Kane's method along with the null space method. Kane's method reduces the dimension of equations of motion by using partial velocity matrix introduced in this study : it can improve the efficiency of the formulation. Three numerical examples are given to demonstrate the accuracy and efficiency of the formulation.

A Non-linear Model for Dynamic Analysis of Reactor Internals (원자로내부구조물의 동적해석을 위한 비선형모델)

  • Myung-J.Jhun;Sang-G.Chang;Song, Heuy-G.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.165-172
    • /
    • 1993
  • A non-linear mathematical model has been developed for the dynamic analysis of the reactor internals. The model includes a lumped mass and stiffness with non-linear members such as gap-spring. As hydrodynamic couplings have also been considered in the model, the effect of fluid/structure interaction between internals components due to their immersion in a confining fluid can be studied for the dynamic response analysis. The reactor internals responses for seismic and pipe break excitations have been calculated for the case of with-and without-hydrodynamic couplings.

  • PDF

A Numerical Analysis of Dynamic Behavior of Rock Mass with Intense Discontinuities (절리의 방향성을 고려한 암반의 동적거동 수치해석)

  • Ha, Tae-Wook;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.394-404
    • /
    • 2006
  • Dynamic behavior of rock structures depends largely on the dynamic characteristics of ground and input earthquake wave. For blocky rocks with intense discontinuities, the mechanical characteristics of blocks and structural and mechanical characteristics of discontinuities affect overall behavior. In this study, UDEC was adopted to evaluate the dynamic behavior of rocks with various structural characteristics. Obtained results were compared to those of $FLAC^{2D}$, a continuum analysis, and the validity of the method was examined for dynamic analysis of discontinuous rocks for earthquake. Analysis considering the discontinuity showed significant changes in structural shape by the influence of joint behavior, and the behavior by continuum analysis was overestimated.

Evaluation of Dynamic Characteristics of Rubber Materials Using a Double Cantilever Sandwich Beam Method (양팔 샌드위치보 시험법에 의한 EPDM고무의 동특성 평가 연구)

  • Kim, Kwang-Woo;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1393-1400
    • /
    • 2002
  • A double cantilever sandwich-beam method has been applied to the evaluation of the frequency dependence of dynamic elastic modulus and material loss factor of EPDM rubbers. The flexural vibration of a double cantilever sandwich-beam specimen with an inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Effects of the rubber layer length on the dynamic characteristics were also investigated: reliable values were measured when the length of the inserted rubber layer was larger than and equal to 50% of the effective specimen length. The values were compared with those obtained by the dynamic mechanical analysis and the simple resonant test. Relationships of the dynamic characteristics of rubbers with frequency could be determined using the least square error method.