References
- Amemiya, T., Hashimoto, K. and Fujishima, A. (1993), "Frequency-resolved faradaic processes in polypyrrole films observed by electromodulation techniques: electrochemical impedance and color impedance spectroscopies", J. Phys. Chem., 97(16), 4187-4191. https://doi.org/10.1021/j100118a040
- Amiri Moghadam, A.A., Moavenian, M. and Torabi, K., (2010), "Takagi-Sugeno fuzzy modelling and parallel distribution compensation control of conducting polymer actuators", J. Syst. Control Eng., 224(1), 41-51.
- Amiri Moghadam, A.A., Moavenian, M. and Ekhteraei Tousi, H. (2011a), "Modeling and robust control of a soft robot based on conjugated polymer actuators", Model. Iden. Control, 14(3), 216-226. https://doi.org/10.1504/IJMIC.2011.042657
- Amiri Moghadam, A.A., Torabi, K. and Moavenian, M. (2011b), "Finite element modeling and robust control of fast trilayer polypyrrole bending actuators", Int. J. Appl. Electrom., 35, 281-305.
- Amiri Moghadam, A.A., Moavenian, M., Torabi, K. and Tahani, M. (2011c), "Analytical dynamic modeling of fast trilayer polypyrrole bending actuators", Smart Mater. Struct., 20(11), 1-9.
- Amiri Moghadam. A.A. (2012), Dynamic modeling and robust control of a micro robot based on fast trilayer polypyrrole, Ph.D. Dissertation, Ferdowsi University of Mashhad, Mashhad.
- Amiri Moghadam, A.A., Torabi, K., Moavenian, M. and Davoodi, R. (2012), "Dynamic modeling and robust control of an l-shaped micro robot based on fast trilayer polypyrrole bending actuators", J. Intel. Mat. Syst. Str., 24(4), 484-498. https://doi.org/10.1177/1045389X12463619
- Amiri Moghadam, A.A., Hong, W., Kouzani, A., Kaynak, A., Zamani, R. and Montazami, R. (2014), "Nonlinear dynamic modeling of ionic polymer conductive network composite actuators using rigid finite element method", Sensor. Actuat. A, DOI: 10.1016/j.sna.2014.07.012.
- Bar-Cohen, Y., Xue, T., Shahinpoor, M., Simpson, J. and Smith, J. (1998), "Flexible, low-mass robotic arm actuated by electroactive polymers and operated equivalently to human arm and hand", Proceedings of the 3rd Conf. on Robotics for Challenging Environments, Albuquerque, New Mexico, USA.
- Bar-Cohen, Y. (2001), Electroactive polymer (eap) actuators as artificial muscles: reality, potential, and challenges, SPIE, Bellingham, WA, USA.
- Bowers, T.A. (2004), Modeling, simulation, and control of a polypyrrole-based conducting polymer actuator, PhD Dissertation, MIT, Massachusetts.
- Carpi, F. and Smela, E. (2009), Biomedical Applications of Electroactive Polymer Actuators, London, UK, John Wiley & Sons Ltd.
- Chen, Z., Shatara, S. and Tan, X. (2010), "Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin", IEEE/ASME T. Mechatron., 15, 448-59. https://doi.org/10.1109/TMECH.2009.2027812
- Christophersen, M., Shapiro, B. and Smela, E. (2006), "Characterization and modelling of PPy bilayer microactuators. Part 1. Curvature", Sensor. Actuat. B - Chem., 115, 596-609. https://doi.org/10.1016/j.snb.2005.10.023
- Collins, N.E., Eglese, R.W. and Golden, B.L. (1988), "Simulated annealing-An annotated bibliography", Am. J. Mathematical Management Sci., 8, 209-308.
- Daum, P., Lenhard, J.R., Rolison, D. and Murray, R.W. (1980), "Diffusional charge transport through ultrathin films of radiofrequency plasma polymerized vinylferrocene at low temperature", J. Am. Chem. Soc., 102(14), 4649-4653. https://doi.org/10.1021/ja00534a014
- Della Santa, A., De Rossi, D. and Mazzoldi, A. (1997), "A Characterization and modeling of a conducting polymer muscle-like linear actuator", Smart Mater. Struct., 6(1), 23-34. https://doi.org/10.1088/0964-1726/6/1/003
- Du, P., Lin, X. and Zhang, X. (2010), "A multilayer bending model for conducting polymer actuators", Sensor. Actuat. A- Phys., 163(1), 240-246. https://doi.org/10.1016/j.sna.2010.06.002
- Fang, Y., Tan, X., Shen, Y., Xi, N. and Alici, G. (2008a), "A scalable model for trilayer conjugated polymer actuators and its experimental validation", Mater. Sci. Eng., 28(3), 421-428. https://doi.org/10.1016/j.msec.2007.04.024
- Fang, Y., Tan, X. and Alici, G. (2008b), "Redox level-dependent impedance model for conjugated polymer actuators", Sensor. Actuat. B - Chem., 132(1), 182-190. https://doi.org/10.1016/j.snb.2008.01.024
- Hara, S., Zama, T., Takashima, W. and Kaneto, K. (2005), "Free-standing gel-like polypyrrole actuators doped with bis (perfluoroalkylsulfonyl) imide exhibiting extremely large strain", Smart Mater. Struct., 14(6), 481-494.
- Haus, H., Matysek, M., Mossinger, H. and Schlaak, H.F. (2013), "Modelling and characterization of dielectric elastomer stack actuators", Smart Mater. Struct., 22(10), 1-13.
- Jager, E., Smela, E. and Inganas, I. (2000), "Microfabricating conjugated polymer actuators", Science, 290, 1540-1545. https://doi.org/10.1126/science.290.5496.1540
- John, S.W., Alici, G. and Cook, C.D. (2008), "Validation of resonant frequency model for polypyrrole trilayer actuators", IEEE/ASME T. Mechatron., 13(4), 401-409. https://doi.org/10.1109/TMECH.2008.2000883
- John, S.W., Alici, G. and Cook, C.D. (2010), "Inversion-based feedforward control of polypyrrole trilayer bender actuators", IEEE/ASME T. Mechatro., 15(1), 149-156. https://doi.org/10.1109/TMECH.2009.2020732
- Kaal, W., Herold, S. and Melz, T. (2010), "Modeling approaches for electroactive polymers", SPIE Proceedings San Diego, USA, 7642, 1-11.
- Kaneto, K., Kaneko, M., Min, Y. and MacDiarmid, A.G. (1995), "Artificial muscle: electromechanical actuators using polyaniline films", Synthetic Metals, 71(1-3), 2211-2212. https://doi.org/10.1016/0379-6779(94)03226-V
- Kaynak, A., Yang, C., Lim, Y.C. and Kouzani, A. (2011), "Electrochemical fabrication and modelling of mechanical behavior of a tri-layer polymer actuator", Mater. Chem. Phys., 125(1-2), 113-117. https://doi.org/10.1016/j.matchemphys.2010.08.080
- Kaynak, A. (1997), "Effect of synthesis parameters on the surface morphology of polypyrrole thin films", Mater. Res. Bull., 32(3), 271-285. https://doi.org/10.1016/S0025-5408(96)00200-0
- Madden, D.W. (2000), Conducting polymer actuators, PhD Dissertation, MIT, Massachusetts.
- Madden, P.G.A. (2003), Development and modeling of conducting polymer actuators and the fabrication of a conducting polymer based feedback loop, PhD Dissertation, MIT, Massachusetts.
- Madden, J., Vandesteeg, N., Madden, P., Takshi, A., Zimet, R., Anquetil, P., Lafontaine, S., Wierenga, P. and Hunter, I.W. (2004), "Artificial muscle technology: physical principles and naval prospects", IEEE J. Oceanic Eng., 29(3), 706-728. https://doi.org/10.1109/JOE.2004.833135
- Mutlu, R., Alici, G. and Li, W. (2013a), "An effective methodology to solve inverse kinematics of electroactive polymer actuators modelled as active and soft robotic structures", Mech. Machine Theory, 67, 94-110. https://doi.org/10.1016/j.mechmachtheory.2013.04.005
- Mutlu, R., Alici, G. and Li, W. (2013b), "Electroactive polymers as soft robotic actuators: electromechanical modeling and identification", IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, 1096-1101.
- Nguyena, C.H., Alici, G. and Wallace, G. (2012), "Modelling trilayer conjugated polymer actuators for their sensorless position control", Sensor. Actuat. A Phys., 185, 82-91. https://doi.org/10.1016/j.sna.2012.07.018
- Otero, T.F. and Teresa Cortes, M. (2001), Characterization of triple layers Smart Structures and Materials: Electroactive Polymer Actuators and Devices; Proc. SPIE 4329, Smart Structures and Materials:Electroactive Polymer Actuators and Devices, Newport Beach, CA, USA, July.
- Punning, A. (2007), Electromechanical characterization of ion polymer metal composite sensing actuators, Ph.D. Dissertation, Tartu University, Tartu, Estonia.
- Shahinpoor, M., Kim, J.K. and Mojarrad, M. (2007), Artificial muscles: applications of Advanced Polymeric Nanocomposites, CRC Press LLC, Boca Raton, FL, USA.
- Shoa, T., Madden, J.D.W., Nigel, R.M. and Yangb, V. (2010), "Analytical modeling of a conducting polymer-driven catheter", Polymer Int., 59(3), 343-351. https://doi.org/10.1002/pi.2783
- Shoa, T., Yoo, D.S., Walus, K. and Madden, J.D.W. (2011), "A dynamic electromechanical model for electrochemically driven conducting polymer actuators", IEEE/ASME T. Mechatron., 16(1), 42-49. https://doi.org/10.1109/TMECH.2010.2090166
- Smela, E., Inganas, O. and Lundstrom, I. (1995), "Controlled folding of microsize structures", Science, 268, 1735-1738. https://doi.org/10.1126/science.268.5218.1735
- Smela, E. (2003), "Conjugated polymer actuators for biomedical applications", Adv. Mater., 15, 481-494. https://doi.org/10.1002/adma.200390113
- Torabi, K. and Amiri Moghadam, A.A. (2012), "Robust control of conjugated polymer actuators considering the spatio-temporal dynamics", J. Syst. Control Eng., 226(6), 806-822.
- Tso, C.H., Madden, J.D.W. and Michal, C.A. (2007), "An NMR study of PF6- ions in polypyrrole", Synthetic Metals, 157(10-12), 460-466. https://doi.org/10.1016/j.synthmet.2007.05.001
- Unsworth, J., Lunn, B., Innis, P., Jin, Z., Kaynak, A. and Booth, N. (1992), "Technical review: conducting polymer electronics", J. Intel. Mat. Syst. Str., 3(3), 380-395. https://doi.org/10.1177/1045389X9200300301
- Wallace, G., Spinks, G., Kane-Maguire, L. and Teasdale, P. (2003), Conductive Electroactive Polymers, CRC Press LLC, Boca Raton, FL, USA.
- Warren, M. (2005), Electronic and structural effects on the electrochemistry of polypyrrole, M.Sc. Thesis, University of British Columbia, Vancouver.
- Wittbrodt, E., Adamiec-Wojcik, I. and Wojciech, S. (2006), Dynamics of Flexible Multibody Systems Springer-Verlag, Berlin Heidelberg, Germany.
- Wu, Y., Alici, G., Spinks, G.M. and Wallace, G. (2006), "Fast trilayer polypyrrole bending actuators for high speed applications", Synthetic Metals, 156(16-17), 1017-1022. https://doi.org/10.1016/j.synthmet.2006.06.022
Cited by
- Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM vol.18, pp.5, 2016, https://doi.org/10.12989/sss.2016.18.5.1029
- Development and analysis of a 3D printed hydrogel soft actuator vol.265, 2017, https://doi.org/10.1016/j.sna.2017.08.038
- Control-Oriented Modeling of a Polymeric Soft Robot vol.3, pp.2, 2016, https://doi.org/10.1089/soro.2016.0002
- Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
- Nonlinear dynamic modeling of ultrathin conducting polymer actuators including inertial effects vol.27, pp.11, 2018, https://doi.org/10.1088/1361-665X/aae456