• Title/Summary/Keyword: dynamic measurement

Search Result 1,890, Processing Time 0.031 seconds

Study on Combustion Gas Properties of a Fuel-Rich Gas Generator (연료 과농 가스발생기의 연소 가스 물성치에 관한 연구)

  • 서성현;최환석;한영민;김성구
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.56-60
    • /
    • 2006
  • It is essential to predict thermodynamic properties of combustion gas with respect to a propellant mixture ratio for the development of a gas generator for a liquid rocket engine. The present study shows the temperature measurement of exit combustion gas as a function of a mixture ratio through the series of combustion tests of a fuel-rich gas generator with liquid oxygen and Jet A-1. The measurements of dynamic and static pressures, and combustion gas temperatures allowed the estimation of thermodynamic properties like a specific heat ratio, a gas constant, and a constant pressure specific heat of the combustion gas. The comparison of the experimental results with predictions made by interpolation parameters obtained from the modification of the chemical equilibrium code indicates that the interpolation method calibrated using the temperature measurements can be utilized as an effective tool for the initial design of a fuel-rich gas generator.

Relationship between Pollen Concentration and Meteorological Condition in an Urban Area (도시지역 공중화분 농도와 기상조건과의 관계)

  • Oh, In-Bo;Kim, Yangho;Choi, Kee-Ryong;Lee, Ji Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.780-788
    • /
    • 2013
  • This study attempted to determine important meteorological parameters related to airborne pollen concentrations in urban areas. Hourly pollen measurement data were prepared from a regular sampling with a volumetric Burkard spore trap at a site in the Ulsan city, during the spring season (March~May) of 2011. Results showed that the daily mean and maximum concentrations for total pollen counts during the spring season were statistically significantly correlated with both air temperature and wind speed; daily mean pollen concentration was the most highly related to daily maximum temperature (r=0.567, p<0.001). It was also identified that pollen concentration has a stronger relationship with wind speed at the rural site than at the urban one, which confirms that strong wind conditions over the pollen sources area can be favorable for pollen dispersal, resulting in increases in airborne pollen concentrations downwind. From the results of an oak-pollen episode analysis, it was found that there was a significant relationship between hourly variation of oak pollen concentrations and dynamic meteorological factors, such as wind and mixing height (representing the boundary layer depth); especially, a strong southwestern wind and elevated mixing height was associated with high nocturnal concentrations of oak pollen. This study suggests that temperature, wind, and mixing height can be important considerations in explaining the pollen concentration variations. Additional examination of complex interactions of multiple meteorological parameters affecting pollen behavior should be carried out in order to better understand and predict the temporal and spatial pollen distribution in urban areas.

Effect of Payload on Fuel Consumption and Emission of Light Duty Freight Truck during Acceleration Driving (소형 화물 차량의 적재량이 가속 주행 시의 연비 및 오염물질 배출에 미치는 영향)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Jeon, Sang-Jin;Park, Jun-Hong;Lee, Jong-Tae;Hong, Ji-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • The effect of payload on fuel consumption and emission of light duty freight truck during acceleration driving has been analyzed. Running tests were carried out with various payload conditions on chassis dynamometer. A typical driving pattern for urban cities was used. Real time emission measurement systems for gaseous and soot emission were utilized to investigate the real time dynamic of fuel use and exhaust emissions. It was observed that fuel use and pollutant emissions were increased as payload was increased. Under the same payload condition, the increased amount of acceleration driving is much higher than that of steady state driving. The results demonstrated the advantages of eco-driving, which is an environmentally friendly driving manner, could be emphasized in heavier payload condition. Inertial tractive power was introduced for considering the parameters affecting emission during acceleration driving, which are speed, acceleration and payload. Fuel use and emission in various driving conditions were expressed as functions of inertial tractive power. The estimated result by these functions well predicted measured result within 10 % deviation.

A Novel Perceptual No-Reference Video-Quality Measurement With the Histogram Analysis of Luminance and Chrominance (휘도, 색차의 분포도 분석을 이용한 인지적 무기준법 영상 화질 평가방법)

  • Kim, Yo-Han;Sung, Duk-Gu;Han, Jung-Hyun;Shin, Ji-Tae
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2009
  • With advances in video technology, many researchers are interested in video quality assessment to prove better performance of proposed algorithms. Since human visual system is too complex to be formulated exactly, many researches about video quality assessment are in progressing. No-reference video-quality assessment is suitable for various video streaming services, because of no requested additional data and network capacity to perform quality assessment. In this paper, we propose a novel no-reference video-quality assessment method with the estimation of dynamic range distortion. To measure the performance, we obtain mean opinion score (MOS) data by subject video quality test with the ITU-T P.910 Absolute Category Rating (ACR) method. And, we compare it with proposed algorithm using 363 video sequences. Experimental results show that the proposed algorithm has a higher correlation with obtained MOS.

Precision Orbit Determination of the SAC-C Satellite Using the GPS Dual Frequency Measurement

  • Yoon, Jae-Cheol;Im, Jeong-Heum;Moon, Hong-Youl;Lee, Sang-Ryool;Lee, Byoung-Sun
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.48-48
    • /
    • 2003
  • A precision orbit determination (POD) system of low Earth orbiter using the GPS dual frequency measurements has been developed. It is an option of KOMPSAT-2 POD process system. In this research, the orbit determination using the real dual frequency carrier phase measurements of the SAC-C satellite was conducted to verify KOMPSAT-2 POD system reliability. The SAC-C satellite is an international cooperative mission between NASA, the Argentine Commission on Space Activities (CONAE), Centre National d'Etudes Spatiales (CNES or the French Space Agency), Instituto Nacional De Pesquisas Espaciais (Brazilian Space Agency), Danish Space Research Institute, and Agenzia Spaziale Italiana (Italian Space Agency). The SAC-C was launched at November 21, 2000. The altitude of SAC-C is 702 km and it carries a TurboRogue III GPS and four high gain antennas developed by the JPL. The receiver is able to generate the dual frequency code and carrier phase data. Double-differenced carrier phase measurements were formed using 25 IGS stations. The data were sampled at 30 seconds interval. Fully dynamic approach was adopted for POD. The POD results were compared with those of JPL using GOA n software. The comparison verifies that deci-meter level 3D position accuracy of low Earth orbiting satellite could be achieved. The POD system has been developed successfully.

  • PDF

Modal identification and model updating of a reinforced concrete bridge

  • El-Borgi, S.;Choura, S.;Ventura, C.;Baccouch, M.;Cherif, F.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.83-101
    • /
    • 2005
  • This paper summarizes the application of a rational methodology for the structural assessment of older reinforced concrete Tunisian bridges. This methodology is based on ambient vibration measurement of the bridge, identification of the structure's modal signature and finite element model updating. The selected case study is the Boujnah bridge of the Tunis-Msaken Highway. This bridge is made of a continuous four-span simply supported reinforced concrete slab without girders resting on elastomeric bearings at each support. Ambient vibration tests were conducted on the bridge using a data acquisition system with nine force-balance accelerometers placed at selected locations of the bridge. The Enhanced Frequency Domain Decomposition technique was applied to extract the dynamic characteristics of the bridge. The finite element model was updated in order to obtain a reasonable correlation between experimental and numerical modal properties. For the model updating part of the study, the parameters selected for the updating process include the concrete modulus of elasticity, the elastic bearing stiffness and the foundation spring stiffnesses. The primary objective of the paper is to demonstrate the use of the Enhanced Frequency Domain Decomposition technique combined with model updating to provide data that could be used to assess the structural condition of the selected bridge. The application of the proposed methodology led to a relatively faithful linear elastic model of the bridge in its present condition.

Vibration-based structural health monitoring for offshore wind turbines - Experimental validation of stochastic subspace algorithms

  • Kraemer, Peter;Friedmanna, Herbert
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.693-707
    • /
    • 2015
  • The efficiency of wind turbines (WT) is primarily reflected in their ability to generate electricity at any time. Downtimes of WTs due to "conventional" inspections are cost-intensive and undesirable for investors. For this reason, there is a need for structural health monitoring (SHM) systems, to enable service and maintenance on demand and to increase the inspection intervals. In general, monitoring increases the cost effectiveness of WTs. This publication concentrates on the application of two vibration-based SHM algorithms for stability and structural change monitoring of offshore WTs. Only data driven, output-only algorithms based on stochastic subspace identification (SSI) in time domain are considered. The centerpiece of this paper deals with the rough mathematical description of the dynamic behavior of offshore WTs and with the basic presentation of stochastic subspace-based algorithms and their application to these structures. Due to the early stage of the industrial application of SHM on offshore WT on the one side and the required confidentiality to the plant manufacturer and operator on the other side, up to now it is not possible to analyze different isolated structural damages resp. changes in a systematic manner, directly by means of in-situ measurement and to make these "acknowledgements" publicly available. For this reason, the sensitivity of the methods for monitoring purposes are demonstrated through their application on long time measurements from a 1:10 large scale test rig of an offshore WT under different conditions: undamaged, different levels of loosened bolt connections between tower parts, different levels of fouling, scouring and structure inclination. The limitation and further requirements for the approaches and their applicability on real foundations are discussed along the paper.

Structural identification based on substructural technique and using generalized BPFs and GA

  • Ghaffarzadeh, Hosein;Yang, T.Y.;Ajorloo, Yaser Hosseini
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • In this paper, a method is presented to identify the physical and modal parameters of multistory shear building based on substructural technique using block pulse generalized operational matrix and genetic algorithm. The substructure approach divides a complete structure into several substructures in order to significantly reduce the number of unknown parameters for each substructure so that identification processes can be independently conducted on each substructure. Block pulse functions are set of orthogonal functions that have been used in recent years as useful tools in signal characterization. Assuming that the input-outputs data of the system are known, their original BP coefficients can be calculated using numerical method. By using generalized BP operational matrices, substructural dynamic vibration equations can be converted into algebraic equations and based on BP coefficient for each story can be estimated. A cost function can be defined for each story based on original and estimated BP coefficients and physical parameters such as mass, stiffness and damping can be obtained by minimizing cost functions with genetic algorithm. Then, the modal parameters can be computed based on physical parameters. This method does not require that all floors are equipped with sensor simultaneously. To prove the validity, numerical simulation of a shear building excited by two different normally distributed random signals is presented. To evaluate the noise effect, measurement random white noise is added to the noise-free structural responses. The results reveal the proposed method can be beneficial in structural identification with less computational expenses and high accuracy.

A Study on Dynamic Modeling of the Vibration Isolation System for the Ultra Precision Measurement (초정밀작업을 위한 제진시스템의 동역학 모델링 연구)

  • Son, Sung-Wan;Jang, Sung-Ho;Baek, Jae-Ho;Chun, Chong-Keun;Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • The anti-vibration tables that use air suspensions as dampers have been widely used due to their high anti-vibration performance in wide frequency band. However, they face a problem of easily accelerating the vibration when triggered by external force because their air suspensions have low rigidity and dampness. In response, there has been a study on active/semi-active dampers that use only the passive components like air suspensions to complement the passive-control format. Thus, we have dynamically analyzed the active/semi-active control of such passive anti-vibration tables. To demonstrate the anti-vibration table's control system, we have also constructed a kinetic model based on the physical characteristics of an anti-vibration table with 6 degrees of freedom and verified its applicability through analysis and experiments.

Measurement of the intrinsic speed of sound in a hot melt ceramic slurry for 3D rapid prototyping with inkjet technology (3차원 잉크젯 쾌속 조형법을 위한 세라믹 상변화 잉크의 음속측정)

  • Shin, Dong-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.892-898
    • /
    • 2008
  • 3D rapid prototyping is the manufacturing technology to fabricate a prototype with the data stored in a computer, which differs from conventional casting technology in terms of an additive process. Various 3D rapid prototyping techniques such as stereolithograpy. fused deposition modeling. selective laser sintering, laminated object manufacturing have been developed but among them, 3D inkjet printing has a unique feature that materials could be jetted to directly form the body of a prototype, which could be a finished product functionally and structurally. However, this needs ink with a high solid content, which tends to increase the dynamic viscosity of ink. The increase of ink viscositytends to restrict the jettable range of ink and hence the jetting conditions should be optimized. The intrinsic speed of sound in a hot melt ink with ceramic nanoparticles dispersed is one of key components to determine the jettable range of ink. In this paper, the way to measure the intrinsic speed of sound in a hot melt ceramic ink is proposed and its influence on the jetting condition is discussed.