• Title/Summary/Keyword: dynamic learning rate

Search Result 95, Processing Time 0.023 seconds

Parameter Estimation of 2-DOF System Based on Unscented Kalman Filter (UKF 기반 2-자유도 진자 시스템의 파라미터 추정)

  • Seung, Ji-Hoon;Kim, Tae-Yeong;Atiya, Amir;Parlos, Alexander;Chong, Kil-To
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1128-1136
    • /
    • 2012
  • In this paper, the states and parameters in a dynamic system are estimated by applying an Unscented Kalman Filter (UKF). The UKF is widely used in various fields such as sensor fusion, trajectory estimation, and learning of Neural Network weights. These estimations are necessary and important in determining the stability of a mobile system, monitoring, and predictions. However, conventional approaches are difficult to estimate based on the experimental data, due to properties of non-linearity and measurement noises. Therefore, in this paper, UKF is applied in estimating the states and parameters needed. An experimental dynamic system has been set up for obtaining data and the experimental data is collected for parameter estimation. The measurement noises are primarily reduced by applying the Low Pass Filter (LPF). Given the simulation results, the estimated error rate is 39 percent more efficient than the results obtained using the Least Square Method (LSM). Secondly, the estimated parameters have an average convergence period of four seconds.

Anomaly Detection in Livestock Environmental Time Series Data Using LSTM Autoencoders: A Comparison of Performance Based on Threshold Settings (LSTM 오토인코더를 활용한 축산 환경 시계열 데이터의 이상치 탐지: 경계값 설정에 따른 성능 비교)

  • Se Yeon Chung;Sang Cheol Kim
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.48-56
    • /
    • 2024
  • In the livestock industry, detecting environmental outliers and predicting data are crucial tasks. Outliers in livestock environment data, typically gathered through time-series methods, can signal rapid changes in the environment and potential unexpected epidemics. Prompt detection and response to these outliers are essential to minimize stress in livestock and reduce economic losses for farmers by early detection of epidemic conditions. This study employs two methods to experiment and compare performances in setting thresholds that define outliers in livestock environment data outlier detection. The first method is an outlier detection using Mean Squared Error (MSE), and the second is an outlier detection using a Dynamic Threshold, which analyzes variability against the average value of previous data to identify outliers. The MSE-based method demonstrated a 94.98% accuracy rate, while the Dynamic Threshold method, which uses standard deviation, showed superior performance with 99.66% accuracy.

Crack Identification Using Hybrid Neuro-Genetic Technique (인공신경망 기법과 유전자 기법을 혼합한 결함인식 연구)

  • Suh, Myung-Won;Shim, Mun-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.158-165
    • /
    • 1999
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.

  • PDF

The Effect of E-Business on Firm's Growth and Profitability in the Distribution Industry (e-비즈니스의 유통기업 성장성 및 수익성 기여 효과분석)

  • Baek, Chul-Woo
    • Journal of Distribution Science
    • /
    • v.15 no.1
    • /
    • pp.123-130
    • /
    • 2017
  • Purpose - This research aims to examine the effect of e-business adoption on firm's growth and profitability in the distribution industry. The value added from the distribution industry acts as the cost of other industries. As the distribution industry develops, its stage becomes shorter and the distribution margin becomes smaller. Therefore, e-business is expected to have a different effect on the distribution industry than other industries. Research design, data and methodology - The previous research generally used e-business adoption as an independent variable and firm's performance as a dependent variable. This study elaborated the model using a dynamic panel model that includes the performance variable of the previous year as an independent variable. By employing system GMM (Generalized Method of Moments), the endogeneity problem in the dynamic panel model can be solved. For the analysis, I extracted the distribution companies as the raw data in the National Statistical Office's Business Activity Survey over the period 2006 to 2012. Results - The growth rate of firms adopting e-business was 0.299%p higher than that of the non-adopter. However, only ERP (Enterprise Resource Planning), KMS (Knowledge Management System) and SCM (Supply Chain Management) contributed positively to the growth rate. In the case of profitability, it was 0.04%p higher than the distribution companies that did not adopt e-business. ERP and LMS (Learning Management System) improve profitability, while SCM reduces profitability. Consequently, while ERP improves both growth and profitability, SCM improves growth but reduces profitability. In addition, KMS improves firm's growth only, and LMS does only profitability, showing that each e-business has a differentiated effect. Conclusions - Since the distribution industry has different characteristics from manufacturing and other service industries, the introduction of e-business may not guarantee the growth and profitability of distribution companies. Careful introduction considering the characteristics of the distribution industry is required. In particular, it is necessary to select an e-business meeting the characteristics and needs of a distribution company, and thereafter, it is required for the company's own efforts to internalize it within the system.

Key-word Recognition System using Signification Analysis and Morphological Analysis (의미 분석과 형태소 분석을 이용한 핵심어 인식 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1586-1593
    • /
    • 2010
  • Vocabulary recognition error correction method has probabilistic pattern matting and dynamic pattern matting. In it's a sentences to based on key-word by semantic analysis. Therefore it has problem with key-word not semantic analysis for morphological changes shape. Recognition rate improve of vocabulary unrecognized reduced this paper is propose. In syllable restoration algorithm find out semantic of a phoneme recognized by a phoneme semantic analysis process. Using to sentences restoration that morphological analysis and morphological analysis. Find out error correction rate using phoneme likelihood and confidence for system parse. When vocabulary recognition perform error correction for error proved vocabulary. system performance comparison as a result of recognition improve represent 2.0% by method using error pattern learning and error pattern matting, vocabulary mean pattern base on method.

Adaptively Trained Artificial Neural Network Identification of Left Ventricular Assist Device (적응 학습방식의 신경망을 이용한 좌심실보조장치의 모델링)

  • Kim, Sang-Hyun;Kim, Hun-Mo;Ryu, Jung-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.387-394
    • /
    • 1996
  • This paper presents a Neural Network Identification(NNI) method for modeling of highly complicated nonlinear and time varing human system with a pneumatically driven mock circulatory system of Left Ventricular Assist Device(LVAD). This system consists of electronic circuits and pneumatic driving circuits. The initiation of systole and the pumping duration can be determined by the computer program. The line pressure from a pressure transducer inserted in the pneumatic line was recorded System modeling is completed using the adaptively trained backpropagation learning algorithms with input variables, heart rate(HR), systole-diastole rate(SDR), which can vary state of system. Output parameters are preload, afterload which indicate the systemic dynamic characteristics. Consequently, the neural network shows good approximation of nonlinearity, and characteristics of left Ventricular Assist Device. Our results show that the neural network leads to a significant improvement in the modeling of highly nonlinear Left Ventricular Assist Device.

  • PDF

Middle School Students' Understanding of Constant Rate of Change in Functional Situations Using SimCalc MathWorlds (SimCalc MathWorlds를 활용한 함수적 상황에서 드러나는 중학생들의 일정한 변화율에 대한 이해)

  • Ma, Minyoung
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.3
    • /
    • pp.599-614
    • /
    • 2017
  • The purpose of this study is to compare and analyze middle school students' understanding of constant rate of change, in terms of observing, representing and interpreting dynamic functions in various ways using the SimCalc MathWorlds. For this purpose, parts of a class conducted for six students in the first grade of middle school were analyzed. The results suggested two implications for a class that used this program (SimCalc MathWorlds): First, we confirmed that the relationships between the two quantities that students notice in the same situation can be different. Second, the program helped students to develop a more comprehensive understanding of the meaning of the constant rate of change. The study also revealed the need to use technology in teaching and learning about functions, particularly to represent and interpret a given situation that involves the constant rate of change in various ways. Further, the results can contribute to developing contents and methods to teach functions using technology in consideration of students' different levels of understanding.

A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration

  • Wang, Jianguo Jack;Wang, Jinling;Sinclair, David;Watts, Leo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.277-282
    • /
    • 2006
  • It is well known that Kalman filtering is an optimal real-time data fusion method for GPS/INS integration. However, it has some limitations in terms of stability, adaptability and observability. A Kalman filter can perform optimally only when its dynamic model is correctly defined and the noise statistics for the measurement and process are completely known. It is found that estimated Kalman filter states could be influenced by several factors, including vehicle dynamic variations, filter tuning results, and environment changes, etc., which are difficult to model. Neural networks can map input-output relationships without apriori knowledge about them; hence a proper designed neural network is capable of learning and extracting these complex relationships with enough training. This paper presents a GPS/INS integrated system that combines Kalman filtering and neural network algorithms to improve navigation solutions during GPS outages. An Extended Kalman filter estimates INS measurement errors, plus position, velocity and attitude errors etc. Kalman filter states, and gives precise navigation solutions while GPS signals are available. At the same time, a multi-layer neural network is trained to map the vehicle dynamics with corresponding Kalman filter states, at the same rate of measurement update. After the output of the neural network meets a similarity threshold, it can be used to correct INS measurements when no GPS measurements are available. Selecting suitable inputs and outputs of the neural network is critical for this hybrid method. Detailed analysis unveils that some Kalman filter states are highly correlated with vehicle dynamic variations. The filter states that heavily impact system navigation solutions are selected as the neural network outputs. The principle of this hybrid method and the neural network design are presented. Field test data are processed to evaluate the performance of the proposed method.

  • PDF

Feature-Strengthened Gesture Recognition Model Based on Dynamic Time Warping for Multi-Users (다중 사용자를 위한 Dynamic Time Warping 기반의 특징 강조형 제스처 인식 모델)

  • Lee, Suk Kyoon;Um, Hyun Min;Kwon, Hyuck Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.10
    • /
    • pp.503-510
    • /
    • 2016
  • FsGr model, which has been proposed recently, is an approach of accelerometer-based gesture recognition by applying DTW algorithm in two steps, which improved recognition success rate. In FsGr model, sets of similar gestures will be produced through training phase, in order to define the notion of a set of similar gestures. At the 1st attempt of gesture recognition, if the result turns out to belong to a set of similar gestures, it makes the 2nd recognition attempt to feature-strengthened parts extracted from the set of similar gestures. However, since a same gesture show drastically different characteristics according to physical traits such as body size, age, and sex, FsGr model may not be good enough to apply to multi-user environments. In this paper, we propose FsGrM model that extends FsGr model for multi-user environment and present a program which controls channel and volume of smart TV using FsGrM model.

Linkage of Hydrological Model and Machine Learning for Real-time Prediction of River Flood (수문모형과 기계학습을 연계한 실시간 하천홍수 예측)

  • Lee, Jae Yeong;Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • The hydrological characteristics of watersheds and hydraulic systems of urban and river floods are highly nonlinear and contain uncertain variables. Therefore, the predicted time series of rainfall-runoff data in flood analysis is not suitable for existing neural networks. To overcome the challenge of prediction, a NARX (Nonlinear Autoregressive Exogenous Model), which is a kind of recurrent dynamic neural network that maximizes the learning ability of a neural network, was applied to forecast a flood in real-time. At the same time, NARX has the characteristics of a time-delay neural network. In this study, a hydrological model was constructed for the Taehwa river basin, and the NARX time-delay parameter was adjusted 10 to 120 minutes. As a result, we found that precise prediction is possible as the time-delay parameter was increased by confirming that the NSE increased from 0.530 to 0.988 and the RMSE decreased from 379.9 ㎥/s to 16.1 ㎥/s. The machine learning technique with NARX will contribute to the accurate prediction of flow rate with an unexpected extreme flood condition.