International Journal of Control, Automation, and Systems
/
v.3
no.1
/
pp.43-55
/
2005
In this paper, a predictive control method using self-recurrent wavelet neural network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used as a model predictor for predicting the dynamic property of chaotic systems. The gradient descent method with the adaptive learning rates is applied to train the parameters of the SRWNN based predictor and controller. The adaptive learning rates are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness of the proposed control strategy.
Kim, Jong-Man;Sin, Dong-Yong;Kim, Won-Sop;Kim, Sung-Joong
Proceedings of the KIEE Conference
/
2000.07d
/
pp.2949-2952
/
2000
A new neural networks and learning algorithm are proposed in order to measure nonlinear heights of complexed road environments in realtime without pre-information. This new neural networks is Error Self Recurrent Neural Networks(ESRN), The structure of it is similar to recurrent neural networks: a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by back-propagation and each weights are updated by RLS(Recursive Least Square). Consequently. this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. We can estimate nonlinear models in realtime by ESRN and learning algorithm and control nonlinear models. To show the performance of this one. we control 7 degree of freedom full car model with several control method. From this simulation. this estimation and controller were proved to be effective to the measurements of nonlinear road environment systems.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38B
no.7
/
pp.512-518
/
2013
A resource allocation algorithm has a high impact on user satisfaction as well as the ability to accommodate and process services in a distributed cloud computing. In other words, service rejections, which occur when datacenters have no enough resources, degrade the user satisfaction level. Therefore, in this paper, we propose a resource allocation algorithm considering the cloud domain's remaining resources to minimize the number of service rejections. The resource allocation rate based on Q-Learning increases when the remaining resources are sufficient to allocate the maximum allocation rate otherwise and avoids the service rejection. To demonstrate, We compare the proposed algorithm with two previous works and show that the proposed algorithm has the smaller number of the service rejections.
Journal of Institute of Control, Robotics and Systems
/
v.11
no.9
/
pp.781-788
/
2005
This paper proposes an identification method using a self recurrent wavelet neural network (SRWNN) for dynamic systems. The architecture of the proposed SRWNN is a modified model of the wavelet neural network (WNN). But, unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN has the ability to store the past information of the wavelet. Thus, in the proposed identification architecture, the SRWNN is used for identifying nonlinear dynamic systems. The gradient descent method with adaptive teaming rates (ALRs) is applied to 1.am the parameters of the SRWNN identifier (SRWNNI). The ALRs are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of an SRWNNI. Finally, through computer simulations, we demonstrate the effectiveness of the proposed SRWNNI.
The paper describes a method o( user feedback in order to enhance the retrieval system effectiveness. The existing fuzzification function adapting fuzzy technique has difficulty that 4 type graph is made each time user select components. In this paper, to overcome this weak point of feedback, we proposed the interaction function using gaussian function that gives different learning rate according to choice of components with same function. We suggest the most efficient dynamic interaction function based on comparison of retrieval performance according to parameter of function. And then, we will construct the efficient retrieval system.
International Journal of Computer Science & Network Security
/
v.24
no.10
/
pp.197-205
/
2024
This paper introduces a new approach to semantic image retrieval using shape descriptors as dispersion and moment in conjunction with discriminative model of Latent-dynamic Conditional Random Fields (LDCRFs). The target region is firstly localized via the background subtraction model. Then the features of dispersion and moments are employed to k-mean procedure to extract object's feature as second stage. After that, the learning process is carried out by LDCRFs. Finally, SPARQL language on input text or image query is to retrieve semantic image based on sequential processes of Query Engine, Matching Module and Ontology Manger. Experimental findings show that our approach can be successful retrieve images against the mammals Benchmark with rate 98.11. Such outcomes are likely to compare very positively with those accessible in the literature from other researchers.
Journal of the Korean Operations Research and Management Science Society
/
v.40
no.1
/
pp.5-19
/
2015
Literatures on open innovation have two major limitations. First, either on a firm level or on an industry level did they analyze the open innovation issues. The results of a firm's innovation can be diffused through the whole network and the firm can learn back from the network knowledge. Prior literatures did not consider the feedback loop among firms and network in which the firms are involved. Second, most open innovation research had a static perspective on firm's innovation performance. Since the diffusion, spill-over and learning among network members are involved over time, the open innovation is intrinsically dynamic. From the dynamic perspective, we can appreciate the fundamental attributes of the open innovation network which involves diverse firms, research institutes, and universities. In order to overcome the limitations, we suggest a dynamic model for open innovation network. We build an agent-based model which consists of heterogeneous firms. The firms are connected through a scale-free network which is formed by preferential attachment. Through the diverse scenario of simulation, we collect massive data on the firm level and analyze them both on firm and industry level. From the analysis, we found that, on industry level, the overall performance of open innovation increases as the internal research capability, absorptive capacity, and learning curve coefficient increase. Noticeably, as the deprecation rate of knowledge increases, the variability of knowledge increases. From the firm level analysis, we found that the industry-level variables had a significant effect on the firm's innovation performance lasting through all the time, whereas the firm-level variables had only on the early phase of innovation.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.10a
/
pp.465-468
/
2007
An intelligent home network system using low-power and low-cost sensor nodes was designed and implemented. In Intelligent Home Network System, active home appliances control is composed of RSSI (Received Signal Strength Indicator) based user indoor location tracking, dynamic multi-hop routing, and learning integration remote-control. Through the remote-control learning, home appliances can be controlled in wireless network environment. User location information for intelligent service is calculated using RSSI based Triangle measurement method, and then the received location information is passed to Smoothing Algorithm to reduce error rate. In order to service Intelligent Home Network, moreover, the sensor node is designed to be held by user. The gathered user data is transmitted through dynamic multi-hop routing to server, and real-time user location & environment information are displayed on monitoring program.
Journal of the Korean Society for Precision Engineering
/
v.15
no.4
/
pp.83-90
/
1998
In this paper, we present neural network for control of Left Ventricular Assist Device(LVAD) system with a pneumatically driven mock circulation system. Beat rate(BR), Systole-Diastole Rate(SDR) and flow rate are collected as the main variables of the LVAD system. System modeling is completed using the neural network with input variables(BR, SBR, their derivatives, actual flow) and output variable(actual flow). It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately. the neural network can be applied to control of a nonlinear dynamic system by learning capability In this study, we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by experiment.
Korean Journal of Construction Engineering and Management
/
v.24
no.5
/
pp.73-82
/
2023
Optimization of Construction Site Layout Planning (CSLP) heavily relies on workers' travel paths. However, traditional path generation approaches predominantly focus on the shortest path, often neglecting critical variables such as individual wayfinding tendencies, the spatial arrangement of site objects, and potential hazards. These oversights can lead to compromised path simulations, resulting in less reliable site layout plans. While Deep Reinforcement Learning (DRL) has been proposed as a potential alternative to address these issues, it has shown limitations. Despite presenting more realistic travel paths by considering these variables, DRL often struggles with efficiency in complex environments, leading to extended learning times and potential failures. To overcome these challenges, this study introduces a refined model that enhances spatial navigation capabilities and learning performance by integrating workers' visibility into the reward functions. The proposed model demonstrated a 12.47% increase in the pathfinding success rate and notable improvements in the other two performance measures compared to the existing DRL framework. The adoption of this model could greatly enhance the reliability of the results, ultimately improving site operational efficiency and safety management such as by reducing site congestion and accidents. Future research could expand this study by simulating travel paths in dynamic, multi-agent environments that represent different stages of construction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.