• Title/Summary/Keyword: dynamic head

Search Result 505, Processing Time 0.053 seconds

Temporal Changes in Neuronal Activity of the Bilateral Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats

  • Park, Byung-Rim;Lee, Moon-Young;Kim, Min-Sun;Lee, Sung-Ho;Na, Han-Jo;Doh, Nam-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.5
    • /
    • pp.481-490
    • /
    • 1999
  • To investigate the changes in the responses of vestibular neurons with time during vestibular compensation, the resting activity and dynamic responses of type I and II neurons in the medial vestibular nuclei to sinusoidal angular acceleration were recorded following unilateral labyrinthectomy (ULX) in Sprague-Dawley rats. The unitary extracellular neuronal activity was recorded from the bilateral medial vestibular nuclei with stainless steel microelectrodes of $3{\sim}5\;M{\Omega}$ before ULX, and 6, 24, 48, 72 hours, and 1 week after ULX under pentobarbital sodium anesthesia (30 mg/kg, i.p.). Gain (spikes/s/deg/s) and phase (in degrees) were determined from the neuronal activity induced by sinusoidal head rotation with 0.05, 0.1, 0.2, and 0.4 Hz. The mean resting activity before ULX was $16.7{\pm}8.6$ spikes/s in type I neurons $(n=67,\;M{\pm}SD)$ and $14.5{\pm}8.4$ spikes/s in type II neurons (n=43). The activities of ipsilateral type I and contralateral type II neurons to the lesion side decreased markedly till 24 hr post-op, and a significant difference between ipsilateral and contralateral type I neurons sustained till 24 hr post-op. The gain at 4 different frequencies of sinusoidal rotation was depressed in all neurons till 6 or 24 hr post-op and then increased with time. The rate of decrease in gain was more prominent in ipsilateral type I and contralateral type II neurons immediately after ULX. Although the gain of those neurons increased gradually after 24 hours, it remained below normal levels. The phase was significantly advanced in all neurons following ULX. These results suggest that a depression of activities in ipsilateral type I and contralateral type II neurons is closely related with the occurrence of vestibular symptoms and restoration of activities in those neurons ameliorates the vestibular symptoms.

  • PDF

The Deformation and Breaking Load of the Fishing Hook by the Tensile Test (인장시험에 의한 낚시의 변형과 파단하중)

  • KO Kwan-Soh;KIM Yong-Hae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.269-275
    • /
    • 1981
  • The fishing hooks were tested for breaking and unbending due to plastic deformation of the material. Study of tensile test is not complicated, but has not even worked out fully enough, especially when the test specimen is subjected to plastic deformation. The fishing hook is subjected to unbending stress and the critical section is a Point which is furthest from the line of action of the forces. The dynamic force of fish during jerks depends on their speed of movement and body weight, the kinetic energy corresponding to it and also on the rlastic displacement of the rigging which absorb the energy. Six kinds of hook were tested by the dynamometer under tensile speed 290mm/min (subscript s) and 780mm/min (subscript f). According to their results, the breaking load(B: kg) can be induced with the formula $B={\alpha}wd^2+\beta$ where w(mm) is the distance between the barb base and the lower shank and d(mm) is diameter. The coefficients of the formula for the round hooks(R) and the angular hooks(A) are approximately as follows: $$R:\;\alpha_{s}=0.5,\;\beta_{s}=1.6,\;\alpha_{f}=0.4,\;\beta_{f}=1.4$$ $$A:\;\alpha_{s}=1.1,\;\beta_{s}=2.0,\;\alpha_{f}=1.0,\;\beta_{f}=0.9$$ The ratio of $B_{f}\;to\;B_{s}$ is corresponding to 0.8. The ratio of deformation(X) that is moved distance of barb base at break to the distance(H) between head base and barb base is about $50\%$. Further study should be carried out on the subject of impact and fatigue test under the same condition which is exerted force by the hooked fish.

  • PDF

An analysis of horizontal deformation of a pile in soil using a continuum soil model for the prediction of the natural frequency of offshore wind turbines (해상풍력터빈의 고유진동수 예측을 위한 지반에 인입된 파일의 연속체 지반 모델 기반 수평 거동 해석)

  • Ryue, Jungsoo;Baik, Kyungmin;Lee, Jong-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.480-490
    • /
    • 2016
  • As wind turbines become larger and lighter, they are likely to respond sensitively by dynamic loads applied on them. Since the responses at resonances are particularly interested, it is required to be able to predict natural frequencies of wind turbines reliably at early design stage. To achieve this, the foundation-soil analysis is needed to be carried out and a finite element approach is adopted in general. However, the finite element approach would not be appropriate in early design stage because it demands heavy efforts in pile-soil modelling and computing facilities. On the contrary, theoretical approaches adopting linear approximations for soils are relatively simple and easy to handle. Therefore, they would be a useful tool in predicting a pile-soil interaction, particularly in early design stage. In this study an analysis for a pile inserted in soil is performed. The pile and soil are modelled as a beam and continuum medium, respectively, within an elastic range. In this analysis, influence factors at the pile head for lateral loads are predicted by means of this continuum approach for various length-diameter ratios of the pile. The influence factors predicted are validated with those reported in literature, proposed from a finite element analysis.

Tumor-like Presentation of Tubercular Brain Abscess: Case Report

  • Karki, Dan B.;Gurung, Ghanashyam;Sharma, Mohan R.;Shrestha, Ram K.;Sayami, Gita;Sedain, Gopal;Shrestha, Amina;Ghimire, Ram K.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.4
    • /
    • pp.231-236
    • /
    • 2015
  • A 17-year-old girl presented with complaints of headache and decreasing vision of one month's duration, without any history of fever, weight loss, or any evidence of an immuno-compromised state. Her neurological examination was normal, except for papilledema. Laboratory investigations were within normal limits, except for a slightly increased Erythrocyte Sedimentation Rate (ESR). Non-contrast computerized tomography of her head revealed complex mass in left frontal lobe with a concentric, slightly hyperdense, thickened wall, and moderate perilesional edema with mass effect. Differential diagnoses considered in this case were pilocytic astrocytoma, metastasis and abscess. Magnetic resonance imaging (MRI) obtained in 3.0 Tesla (3.0T) scanner revealed a lobulated outline cystic mass in the left frontal lobe with two concentric layers of T2 hypointense wall, with T2 hyperintensity between the concentric ring. Moderate perilesional edema and mass effect were seen. Post gadolinium study showed a markedly enhancing irregular wall with some enhancing nodular solid component. No restricted diffusion was seen in this mass in diffusion weighted imaging (DWI). Magnetic resonance spectroscopy (MRS) showed increased lactate and lipid peaks in the central part of this mass, although some areas at the wall and perilesional T2 hyperintensity showed an increased choline peak without significant decrease in N-acetylaspartate (NAA) level. Arterial spin labelling (ASL) and dynamic susceptibility contrast (DSC) enhanced perfusion study showed decrease in relative cerebral blood volume at this region. These features in MRI were suggestive of brain abscess. The patient underwent craniotomy with excision of a grayish nodular lesion. Abundant acid fast bacilli (AFB) in acid fast staining, and epithelioid cell granulomas, caseation necrosis and Langhans giant cells in histopathology, were conclusive of tubercular abscess. Tubercular brain abscess is a rare manifestation that simulates malignancy and cause diagnostic dilemma. MRI along with MRS and magnetic resonance perfusion studies, are powerful tools to differentiate lesions in such equivocal cases.

Performance Evaluation of Traffic Adaptive Sleep based MAC in Clustered Wireless Sensor Networks (클러스터 기반 무선 센서 망에서 트래픽 적응적 수면시간 기반 MAC 프로토콜 성능 분석)

  • Xiong, Hongyu;So, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.107-116
    • /
    • 2011
  • In this paper, a traffic adaptive sleep based medium access control (TAS-MAC) protocol for wireless sensor networks (WSNs) is proposed. The protocol aims for WSNs which consist of clustered sensor nodes and is based on TDMA-like schema. It is a typical schedule based mechanism which is adopted in previous protocols such as LEACH and Bit-Map Assisted MAC. The proposed MAC, however, considers unexpected long silent period in which sensor nodes have no data input and events do not happen in monitoring environment. With the simple traffic measurement, the TAS-MAC eliminates scheduling phases consuming energy in previous centralized approaches. A frame structure of the protocol includes three periods, investigation (I), transmission (T), and sleep-period (S). Through the I-period, TAS-MAC aggregates current traffic information from each end node and dynamically decide the length of sleep period to avoid energy waste in long silent period. In spite of the energy efficiency of this approach, the delay of data might increase. Thus, we propose an advanced version of TAS-MAC as well, each node in cluster sends one or more data packets to cluster head during the T-period of a frame. Through simulation, the performance in terms of energy consumption and transmission delay is evaluated. By comparing to BMA-MAC, the results indicate the proposed protocol is more energy efficient with tolerable expense in latency, especially in variable traffic situation.

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (I) - Theory and Development of Module - (대도시 복합유역의 지표 및 지표하 유출해석기법 개발 (I)- 이론 및 모듈의 개발 -)

  • Kwak, Chang-Jae;Lee, Jae-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.39-52
    • /
    • 2012
  • Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed. In general, these interactions are considered to be one of the most difficult areas of the discipline, particularly for the modeler who intends simulate the dynamic relations between these two major domains of the hydrological cycle. In essence, one major complexity is the spatial and temporal variations in the dynamically interacting system behavior. The proper simulation of these variations requires the need for providing an appropriate coupling mechanism between the surface and subsurface components of the system. In this study, an approach for modelling surface-subsurface flow and transport in a fully intergrated way is presented. The model uses the 2-dimensional diffusion wave equation for sheet surface water flow, and the Boussinesq equation with the Darcy's law and Dupuit-Forchheimer's assumption for variably saturated subsurface water flow. The coupled system of equations governing surface and subsurface flows is discretized using the finite volume method with central differencing in space and the Crank-Nicolson method in time. The interactions between surface and subsurface flows are considered mass balance based on the continuity conditions of pressure head and exchange flux. The major module consists of four sub-module (SUBFA, SFA, IA and NS module) is developed.

Two-dimensional Numerical Simulation of Rainfall-induced Slope Failure (강우에 의한 사면붕괴에 관한 2차원 수치모의)

  • Regmi, Ram Krishna;Jung, Kwan-Sue;Lee, Gi-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.34-34
    • /
    • 2012
  • Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.

  • PDF

Seismic Reliability Analysis of Offshore Wind Turbine with Twisted Tripod Support using Subset Simulation Method (부분집합 시뮬레이션 방법을 이용한 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 지진 신뢰성 해석)

  • Park, Kwang-Yeun;Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.125-132
    • /
    • 2019
  • This paper presents a seismic reliability analysis method for an offshore wind turbine with a twisted tripod support structure under earthquake loading. A three dimensional dynamic finite element model is proposed to consider the nonlinearity of the ground-pile interactions and the geometrical characteristics of the twisted tripod support structure where out-of-plane displacement occurs even under in-plane lateral loadings. For the evaluation of seismic reliability, the failure probability was calculated for the maximum horizontal displacement of the pile head, which is calculated from time history analysis using artificial earthquakes for the design return periods. The application of the subset simulation method using the Markov Chain Monte Carlo(MCMC) sampling is proposed for efficient reliability analysis considering the limit state equation evaluation by the nonlinear time history analysis. The proposed method can be applied to the reliability evaluation and design criteria development of the offshore wind turbine with twisted tripod support structure in which two dimensional models and static analysis can not produce accurate results.

A Preliminary Study for Nonlinear Dynamic Analysis of EEG in Patients with Dementia of Alzheimer's Type Using Lyapunov Exponent (리아프노프 지수를 이용한 알쯔하이머형 치매 환자 뇌파의 비선형 역동 분석을 위한 예비연구)

  • Chae, Jeong-Ho;Kim, Dai-Jin;Choi, Sung-Bin;Bahk, Won-Myong;Lee, Chung Tai;Kim, Kwang-Soo;Jeong, Jaeseung;Kim, Soo-Yong
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 1998
  • The changes of electroencephalogram(EEG) in patients with dementia of Alzheimer's type are most commonly studied by analyzing power or magnitude in traditionally defined frequency bands. However because of the absence of an identified metric which quantifies the complex amount of information, there are many limitations in using such a linear method. According to the chaos theory, irregular signals of EEG can be also resulted from low dimensional deterministic chaos. Chaotic nonlinear dynamics in the EEG can be studied by calculating the largest Lyapunov exponent($L_1$). The authors have analyzed EEG epochs from three patients with dementia of Alzheimer's type and three matched control subjects. The largest $L_1$ is calculated from EEG epochs consisting of 16,384 data points per channel in 15 channels. The results showed that patients with dementia of Alzheimer's type had significantly lower $L_1$ than non-demented controls on 8 channels. Topographic analysis showed that the $L_1$ were significantly lower in patients with Alzheimer's disease on all the frontal, temporal, central, and occipital head regions. These results show that brains of patients with dementia of Alzheimer's type have a decreased chaotic quality of electrophysiological behavior. We conclude that the nonlinear analysis such as calculating the $L_1$ can be a promising tool for detecting relative changes in the complexity of brain dynamics.

  • PDF

Multiple Linear Analysis for Generating Parametric Images of Irreversible Radiotracer (비가역 방사성추적자 파라메터 영상을 위한 다중선형분석법)

  • Kim, Su-Jin;Lee, Jae-Sung;Lee, Won-Woo;Kim, Yu-Kyeong;Jang, Sung-June;Son, Kyu-Ri;Kim, Hyo-Cheol;Chung, Jin-Wook;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.317-325
    • /
    • 2007
  • Purpose: Biological parameters can be quantified using dynamic PET data with compartment modeling and Nonlinear Least Square (NLS) estimation. However, the generation of parametric images using the NLS is not appropriate because of the initial value problem and excessive computation time. In irreversible model, Patlak graphical analysis (PGA) has been commonly used as an alternative to the NLS method. In PGA, however, the start time ($t^*$, time where linear phase starts) has to be determined. In this study, we suggest a new Multiple Linear Analysis for irreversible radiotracer (MLAIR) to estimate fluoride bone influx rate (Ki). Methods: $[^{18}F]Fluoride$ dynamic PET scans was acquired for 60 min in three normal mini-pigs. The plasma input curve was derived using blood sampling from the femoral artery. Tissue time-activity curves were measured by drawing region of interests (ROls) on the femur head, vertebra, and muscle. Parametric images of Ki were generated using MLAIR and PGA methods. Result: In ROI analysis, estimated Ki values using MLAIR and PGA method was slightly higher than those of NLS, but the results of MLAIR and PGA were equivalent. Patlak slopes (Ki) were changed with different $t^*$ in low uptake region. Compared with PGA, the quality of parametric image was considerably improved using new method. Conclusion: The results showed that the MLAIR was efficient and robust method for the generation of Ki parametric image from $[^{18}F]Fluoride$ PET. It will be also a good alternative to PGA for the radiotracers with irreversible three compartment model.