DOI QR코드

DOI QR Code

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (I) - Theory and Development of Module -

대도시 복합유역의 지표 및 지표하 유출해석기법 개발 (I)- 이론 및 모듈의 개발 -

  • Kwak, Chang-Jae (School. of Civil Engrg., Kumoh National Institute of Technology) ;
  • Lee, Jae-Joon (School. of Civil and Environmental Engrg., Kumoh National Institute of Technology)
  • 곽창재 (금오공과대학교 대학원 토목공학과) ;
  • 이재준 (금오공과대학교 토목환경공학부)
  • Received : 2011.07.27
  • Accepted : 2011.11.16
  • Published : 2012.01.31

Abstract

Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed. In general, these interactions are considered to be one of the most difficult areas of the discipline, particularly for the modeler who intends simulate the dynamic relations between these two major domains of the hydrological cycle. In essence, one major complexity is the spatial and temporal variations in the dynamically interacting system behavior. The proper simulation of these variations requires the need for providing an appropriate coupling mechanism between the surface and subsurface components of the system. In this study, an approach for modelling surface-subsurface flow and transport in a fully intergrated way is presented. The model uses the 2-dimensional diffusion wave equation for sheet surface water flow, and the Boussinesq equation with the Darcy's law and Dupuit-Forchheimer's assumption for variably saturated subsurface water flow. The coupled system of equations governing surface and subsurface flows is discretized using the finite volume method with central differencing in space and the Crank-Nicolson method in time. The interactions between surface and subsurface flows are considered mass balance based on the continuity conditions of pressure head and exchange flux. The major module consists of four sub-module (SUBFA, SFA, IA and NS module) is developed.

유역내에서 발생하는 유출은 지표 유출과 지표하 유출이 있으며, 서로 상호작용 상태를 유지하게 된다. 일반적으로 지표와 지표하 둘 중 한 가지 알고리즘으로 해석이 힘든 유역에 대해 지표와 지표하 사이의 동적인 관계를 상세하게 모의해야 하는 경우 상호작용에 관한 요소를 고려하여야 한다. 동적인 상호작용 시스템의 구동에서는 시 공간적인 매개변수가 중요하며, 적절한 모의를 위해시 공간적인 매개변수는 시스템 상에서 지표와 지표하 항에 대한 복합적인 메카니즘으로 구성되어야 한다. 본 연구에서는 이러한 지표 및 지표하 유출의상호작용에 관한 알고리즘을 위해 2차원 확산파 방정식을 이용하여 지표 유출을 해석하고, Darcy의 법칙과 Dupuit-Forchheimer의 가정을 이용한 Boussinesq 방정식을 적용하여 포화상태의 지표하 유출의 알고리즘을 구성하였다. 커플링 방정식으로 공간에 대해서는 유한체적법을 사용하고, 시간에 대해서는 Crank-Nicolson 방법을 이용하였으며, 지표와 지표하 흐름의 상호작용에 대해서는 질량보존의 법칙에 기반하여 구성하였다. 이상의 과정을 통하여 지표 유출해석, 지표하 유출해석, 상호작용, 수치해석 부분의 4가지 주요 모듈을 만들었으며, 4가지 주요 모듈을 통합하여 복합유역의 지표 및 지표하 유출해석 모듈을 개발하였다.

Keywords

References

  1. 고덕구(1989). 소유역의 장기유출 예측을 위한 모의발생 수문모형의 개발. 박사학위논문, 서울대학교.
  2. 김남원, 정일문, 원유승(2004a). "완전 연동형 SWATMODFLOW결합모형, (I) 모형의 개발." 한국수자원학회논문집, 한국수자원학회, 제37권, 제6호, pp. 499-507.
  3. 김문모, 이정우, 이재응(2007). "격자기반의 도시유역 지표면 유출모형의 개발 및 적용." 한국수자원학회논문집, 한국수자원학회, 제40권, 제1호, pp. 25-38.
  4. 김성준(1998). "격자기반의 운동파 강우유출모형 개발(I)-이론 및 모형-." 한국수자원학회논문집, 한국수자원학회, 제31권, 제3호, pp. 303-308.
  5. 김성준, 채효석, 신사철(1998). "격자기반의 운동파 강우유출모형 개발(II)-적용예-." 한국수자원학회논문집, 제31권, 제3호, pp. 309-315.
  6. 신철균, 조효섭, 정관수, 김재한(2004). "저류함수기법을 이용한 격자기반의 강우-유출 모형의개발." 한국수자원학회논문집, 한국수자원학회, 제37권, 제11호, pp. 969-978.
  7. 유동훈, 오윤창(2000). "지표면-지하수의 연계 수치모형." 한국수자원학회 학술발표회논문집, 한국수자원학회, pp. 359-364.
  8. 정인균(2010). 분포형 강우-유출모형의 토양수분 및 격자 흐름추적 알고리듬 개발 및 적용. 박사학위논문, 건국대학교, pp. 8-13.
  9. 최현상, 한건연(2004a). "GIS와 불확실도 해석기법을 이용한 분포형 강우-유출 모형의 개발(I)-이론 및 모형의 개발-." 한국수자원학회논문집, 한국수자원학회, 제37권, 제4호, pp. 329-339.
  10. 최현상, 한건연(2004b). "GIS와 불확실도해석기법을이용한 분포형 강우-유출 모형의 개발(II)-적용 및 분석-." 한국수자원학회논문집, 한국수자원학회, 제37권, 제4호, pp. 341-352.
  11. Abbasi, F., Feyen, J., Roth, R.L., Sheedy, M. and van Genuchten, M.Th. (2003a). "Water flow and solute transport in furrow-irrigated fields." Irrig. Sci., Vol. 22, pp. 57-65. https://doi.org/10.1007/s00271-003-0070-x
  12. Abbasi, F., Simunek, J., van Genuchten, M. Th., Feyen, J., Adamsen, F.J., Hunsaker, D.J., Strelkoff, T.S. and Shouse, P. (2003b). "Overland water flow and solute transport: Model development and field-data analysis." J. Irrig. Drain. Eng., Vol. 129, pp. 71-81. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:2(71)
  13. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Conncll, P.E., and Rasmussen, J. (1986a). "An Introduction to the European Hydrological System-Systeme Hydrologique Europeen SHE. 1: History and Philosophy of a Physically Based Distributed Modelling System." J. Hydrol., Vol. 87, pp. 45-59. https://doi.org/10.1016/0022-1694(86)90114-9
  14. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Conncll, P.E., and Rasmussen, J. (1986b). "An Introduction to the European Hydrological System-Systeme Hydrologique Europeen SHE. 2: Structure of a Physically Based Distributed Modelling System." J. Hydrol., 87, pp. 61-77. https://doi.org/10.1016/0022-1694(86)90115-0
  15. Akanbi, A.A., and Katopodes, N.D. (1988). "A Model for Flood Propagation on Initially Dry Land." J. Hydraul. Eng., Vol. 114, pp. 689-706. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:7(689)
  16. Bixio, A.C., Gambolati, G., Paniconi, C., Putti, M., Shestopalov, V.M., Bublias, V.N., Bohuslavsky, A.S., Kasteltseva, N.B., and Rudenko, Y.F. (2002). "Modeling Groundwater-Surface Water Interactions Including Effects of Morphogenetic Depressions in the Chernobyl Exclusion Zone." Environ. Geol., Vol. 42, pp. 162-177. https://doi.org/10.1007/s00254-001-0486-7
  17. Cheng, X., and Anderson, M.P. (1993). "Numerical Simulation of Ground-Water Interaction with Lakes allowing for Fluctuating Lake Levels." Ground Water, Vol. 31, pp. 929-933. https://doi.org/10.1111/j.1745-6584.1993.tb00866.x
  18. Council, G.W. (1999). A Lake Package for MODFLOW (LAK2) : Documentation and User's Manual. Version 2.2. HSI GeoTrans, Roswell, GA.
  19. Downer, C.W., and Ogden, F.L. (2002). GSSHA User's Manual, Gridded Surface-Subsurface Hydrologic Analysis. Version 1.43 for WMS 6.1, EDRL Techincal Report, Engineering Research and Development Center, U.S. Army Corps of Engineers, Vicksburg.
  20. Fiedler, F.R., and Ramirez, J.A. (2000). "A Numerical Method for Simulating Discontinuous Shallow Flow over an Infiltrating Surface." Int. J. Numer. Methods Fluids, Vol. 32, pp. 219-240. https://doi.org/10.1002/(SICI)1097-0363(20000130)32:2<219::AID-FLD936>3.0.CO;2-J
  21. Gandolfi, C., and Savi, F. (2000). "A Mathematical Model for the Coupled Simulation of Surface Runoff and Infiltration." J. Agric. Eng. Res., Vol. 75, pp. 49-55. https://doi.org/10.1006/jaer.1999.0484
  22. Govindaraju, R.S., and Kavvas, L.M. (1991). "Dynamics of moving boundary overland flows over infiltrating surfaces at hillslopes." Water Resour. Res., Vol. 27, pp. 1885-1898. https://doi.org/10.1029/91WR00689
  23. Gunduz, O., and Aral, M.M. (2005). "River Networks and Groundwater Flow: A Simultaneous Solution of a Coupled System." J. Hydrol., Vol. 301, pp. 216-234. https://doi.org/10.1016/j.jhydrol.2004.06.034
  24. Hromadka, T.V., and Yen, C. (1986), "A Diffusion Hydrodynamic Model." U.S. Geological Survey Water Resources Investigations Report, 87-4137.
  25. Julien, P.Y., and Saghafian, B. (1991). CASC2D User's Manual, A Two-Dimensional Watershed Rainfall-Runoff Model. Center for Geosciences-Hydrologic Modeling Group, Colorado State University (CER90-91PYJ-BS-12).
  26. Katopodes, N.D., and Strelkoff, T.S. (1977). "Dimensionless Solution of Border Irrigation Advance." J. Irrig. Drain. Div. Am. Soc. Civ. Eng., Vol. 103, pp. 401-407.
  27. Kouznetsov, M.Y., Roodsari, R., Pachepsky, Y.A., Shelton, D.R., Sadeghi, A.M., Shirmohammadi, A., and Starr, J.L. (2007). "Modeling Manure-Borne Bromide and Fecal Coliform Transport with Runoff and Infiltration at a Hillslope." J. Environ. Manage., Vol. 84, pp. 336-346. https://doi.org/10.1016/j.jenvman.2006.06.011
  28. Liang, D., Falconer, R.A. and Lin, B. (2007). "Coupling surface and subsurface flows in a depth averaged flood wave model." J. Hydrol., Vol. 337, pp. 147-158. https://doi.org/10.1016/j.jhydrol.2007.01.045
  29. McDonald, M.G., and Harbaugh, A.W. (1988). "A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model." Tech. of Water-Resour. Invest. 06-A1. USGS, Reston, VA.
  30. Ogden, F.L. (1997). Premier : Using WMS for CASC2D Data Development. Brigham Young University, Provo, UT.
  31. Panday, S., and Huyakorn, P.S. (2004). "A Fully Coupled Physically-Based Spatially Distributed Model for Evaluating Surface/Subsurface Flow." Adv. Water Resour., Vol. 27, pp. 361-382. https://doi.org/10.1016/j.advwatres.2004.02.016
  32. Refsgaard, J.C., and Storm, B. (1995). "MIKE-SHE." In V.P. Singh (ed.) Computer models of watershed hydrology. Water Resour. Publ., Highlands Ranch, CO., pp. 809-846
  33. Rojas, R. (2002). GIS-Based Upland Erosion Modeling, Geovisualization and Grid Size Effects on Erosion Simulations with CASC2D-SED. PhD thesis, Department of Civil Engineering, Colorado State University, Fort Collins, Colorado.
  34. Schwankl, L.J., Raghuwanshi, N.S. and Wallender, W.W. (2000). "Furrow irrigation performance under spatially varying conditions." J. Irrig. Drain. Eng., Vol. 126, pp. 355-361. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:6(355)
  35. Singh, K.P. (1968), "Some factor affecting baseflow." Water Resources Research, Vol. 4, No. 5, pp. 985-999 https://doi.org/10.1029/WR004i005p00985
  36. Singh, V., and Bhallamudi, S.M. (1996). "Complete Hydrodynamic Border-Strip Irrigation Model." J. Irrig. Drain. Eng., Vol. 122, pp. 189-197. https://doi.org/10.1061/(ASCE)0733-9437(1996)122:4(189)
  37. Singh, V., and Bhallamudi, S.M. (1997). "Hydrodynamic Modeling of Basin Irrigation." J. Irrig. Drain. Eng., Vol. 123, pp. 407-414. https://doi.org/10.1061/(ASCE)0733-9437(1997)123:6(407)
  38. Singh, V., and Bhallamudi, S.M. (1998). "Conjunctive Surface-Subsurface Modeling of Overland Flow." Adv. Water Resour., Vol. 21, pp. 567-579. https://doi.org/10.1016/S0309-1708(97)00020-1
  39. Smith, R.E., and Woolhiser, D.A. (1971). "Overland Flow on an Infiltrating Surface." Water Resour. Res., Vol. 7, pp. 899-913. https://doi.org/10.1029/WR007i004p00899
  40. Strelkoff, T.S., Clemmens, A.J., and Schmidt, B.V. (1998). "Computer Program for Simulating Flow in Surface Irrigation : Furrows-. Basins-. Borders." U.S. Water Conserv. Lab., Phoenix, AZ. SRFR v.3.31.
  41. U.S. Arid-Land Agricultural Research Center. (2006). WinSRFR 1.0 user manual(draft). Available at policy. nrcs.usda.gov/media/pdf/UG_210_7_10_a.pdf(verified 29 Mar. 2008). USALARC, Maricopa, AZ.
  42. U.S. Army Corps of Engineers (2000). HEC-HMS Hydrologic Modeling System User's Manual. Hydrol. Eng. Ctr., U.S. Army Corps of Engineers, Davis, CA.
  43. Utah State University (1999). SIRMOD II : Surface Irrigation Simulation, Evaluation, and Design: User's Guide and Technical Note. Utah State Univ., Logan.
  44. Utah State University (2003). SIRMOD III: Surface Irrigation Simulation, Evaluation and Design: User's Guide and Technical Note. Utah State Univ., Logan.
  45. VanderKwaak, J.E. (1999). Numerical Simulation of Flow and Chemical Transport in Integrated Surface-Subsurface Hydrologic System. Ph.D. thesis., Univ. of Waterloo, Waterloo, ON, Canada.
  46. Vieux, B.E. (2002). "Predictability of Flash Floods Using Distributed Parameter Physics-Based Models, Appendix B in: Report of a Workshop on Predictability and Limits to prediction in Hydrologic Systems." Committee on Hydrologic Science, National Research Council, National Academy Press, ISBN 0-309-08347-8. pp. 77-82.
  47. Wohling, Th., Singh, R., and Schmitz, G.H. (2004). "Physically Based Modeling of Interacting Surface-Subsurface Flow during Furrow Irrigation Advance." J. Irrig. Drain. Eng., Vol. 130, pp. 349-356. https://doi.org/10.1061/(ASCE)0733-9437(2004)130:5(349)
  48. Wohling, Th., Frohner, A., Schmitz, G.H., and Liedl, R. (2006). "Efficient Solution of the Coupled One-Dimensional Surface-Two-Dimensional Subsurface Flow during Furrow Irrigation Advance." J. Irrig. Drain. Eng., Vol. 132, pp. 380-388. https://doi.org/10.1061/(ASCE)0733-9437(2006)132:4(380)
  49. Zerihun, D., Furman, A., Sanchez, C.A., and Warrick, A.W. (2003). "Calculation of Recession in Basins and Closed-End Furrows: Problems and Simplified Solutions." In Proc. Int. Conf. on Irrig., and Drain., 2nd, Phoenix, AZ. 12-5 May 2003. U.S. Committee on Irrigation and Drainage, Denver, CO. pp. 767-784.
  50. Zerihun, D., Furman, A., Warrick, A.W., and Sanchez, C.A. (2005a). "A Coupled Surface-Subsurface Flow Model for Improved Basin Irrigation Management." J. Irrig. Drain. Eng., Vol. 131, pp. 111-128. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:2(111)
  51. Zerihun, D., Furman, A., Warrick, A.W., and Sanchez, C.A. (2005b). "A Coupled Surface-Subsurface Solute Transport Model for Irrigation Borders and Basins: I. Model Development." J. Irrig. Drain. Eng., Vol. 131, pp. 396-406. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:5(396)
  52. Zerihun, D., Sanchez, C.A., Furman, A., and Warrick, A.W. (2005c). "A Coupled Surface-Subsurface Solute Transport Model for Irrigation Borders and Basins: II. Model Evaluation." J. Irrig. Drain. Eng., Vol. 131, pp. 407-419. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:5(407)

Cited by

  1. A Study on the Runoff Parameter Estimation in the Distributed Model vol.16, pp.3, 2016, https://doi.org/10.9798/KOSHAM.2016.16.3.55