• Title/Summary/Keyword: dynamic hazards

Search Result 78, Processing Time 0.023 seconds

Two Dimensional Laying Simulation of Subsea Cables (유한차분법에 의한 해저케이블의 2차원 포설 시뮬레이션)

  • 박한일;김동혁;김명준;진근하
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 1997
  • Subsea cable systems have a large information transmission capacity and play an important role in domestic and global information networks. However since the cables are under harsh marine environment, they are exposed to various hazards with high potential risks of damage resulting in serious economic loss. In this research a computer simulation program based on the finite difference algorithm was developed. The program is able to simulate two dimensional dynamic behaviour of a submarine cable during its laying. In order to verify the numerical results, they are compared to analytical results, showing a good agreement between the two results.

  • PDF

Performance evaluation of composite moment-frame structures with seismic damage mitigation systems using wavelet analyses

  • Kaloop, Mosbeh R.;Son, Hong Min;Sim, Hyoung-Bo;Kim, Dongwook;Hu, Jong Wan
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.201-214
    • /
    • 2020
  • This study aims at evaluating composite moment frame structures (CFS) using wavelet analysis of the displacement behavior of these structures. Five seismic damage mitigation systems' models of 9-story CFS are examined namely, basic (Model 1), reinforced (Model 2), buckling restrained braced (BRB) (Model 3), lead rubber bearing (LRB) (Model 4), and composite (Model 5) moment frames. A novel integration between continuous and discrete wavelet transforms is designed to estimate the wavelet power energy and variance of measurements' behaviors. The behaviors of the designed models are evaluated under influence of four seismic loads to study the dynamic performance of CFS in the frequency domain. The results show the behaviors of models 3 and 5 are lower than other models in terms of displacement and frequency performances. Model 3 has been shown lower performances in terms of energy and variance wavelets along the monitoring time; therefore, Model 3 demonstrates superior performance and low probability of failure under seismic loads. Furthermore, the wavelet variance analysis is shown a powerful tool that can be used to assess the CFS under seismic hazards.

User Dynamic Access Control for Privacy Protection in Smart Home (스마트 홈에서 프라이버시 보호를 위한 사용자 동적 접근제어)

  • Cho, Do-eun;Kim, Si-jung
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.17-22
    • /
    • 2018
  • Smart home is a technology for monitoring and controlling all the information about a house by integrating various home applications like cooling, heating, lighting, kitchen and security systems into a network. Although home appliances have become more convenient to use due to the development of smart home technology, they are also more vulnerable to information security hazards. Unauthorized visitors may have access to any of home appliance to arbitrarily control it or acquire information. This causes serious privacy and security problems, which should be solved to further smart home technology. This present paper proposed a dynamic user access control system for privacy protection in smart homes. The proposed system defines the role of a user of smart home services by automatically identifying the status information of the user and dynamically controls the access range for the service. In this way, the privacy of a user can be protected and the inter-smart device service is effectively provided. Consequently, the proposed dynamic user access control for smart home will improve the security service for protecting privacy in smart home devices.

Design of Dynamic Free Span for a Subsea Pipeline: Application to the Gas Fields in the South of East Sea of Korea (해저 파이프라인의 동적 자유경간 설계: 동해 남부해역 가스전에의 응용)

  • 박한일;김창현;최경식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 1996
  • Subsea pipelines have an important role in the overall tasks of offshore oil and gas production but arc exposed to various hazards with high potential risks of damage resulting in serious economic loss and impact on ocean environment. In this paper, the dynamic free span is analysed, which is one of main risk factors against the safety of subsea pipelines and the allowable length of dynamic free span which is important for the design of subsea pipelines is determined. The allowable free span length is examined by considering the relationship between vortex shedding frequency and natural frequency of pipeline free span, and the variation of the allowable length is analysed for different boundary conditions of pipe ends. The free span is regarded as a beam on elastic foundations and the boundary condition of the beam is generalized by modelling as restrained by linear and rotational spring at each end. A non-dimensionalized curve is obtained to facilitate the determination of exact allowable length of dynamic free span for subsea pipelines and is applied to the pipelines which is to be installed in the gas fields of the south of East Sea of Korea.

  • PDF

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

The Dynamic Behavior of Earthquake-Actuated Automatic Gas Shutoff Devices (자동 가스차단 밸브의 동적 거동)

  • 이동근;김태호;안상경;임용재
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.468-475
    • /
    • 2001
  • It can be seen through the previous earthquake damages that indirect damages such as those by fire are much greater rather than direct (firsthand) damage by earthquakes. Recently, gas is used very popularly all over the country but no measures have been taken against hazards (or dangers), for instance, such as fires caused by leaking gas pipes when earthquakes occur. Earthquake-Actuated Automatic Gas Shutoff Devices (Shutoff Device) are used to prevent such disaster in other countries. ChungJung Engineering. Co. is making a sample of a Shutoff Device for the first time in Korea. In this study, a derivation of mathermatical model and the important effects of various variables on the shutoff device are mentioned.

  • PDF

Measurement and Strategies for Dynamic Stability During Locomotion on a Slippery Surface (미끄럼 바닥에서 안정성 유지를 위한 균형 전략과 평가방법)

  • Kim, Tack-Hoon;Yoon, Doo-Sik
    • Physical Therapy Korea
    • /
    • v.10 no.1
    • /
    • pp.97-108
    • /
    • 2003
  • Slipping during various kinds of movement often leads to potentially dangerous incidents of falling. The purpose of this paper was to review some of the research performed in the field including such topics as rating scales for balance, kinematics and kinetics of slipping, adaptation to slippery conditions, postural and balance control, and protective movement during falling. Controlling slipping and fall injuries requires a multifaceted approach. Environmental conditions (state of floor surface, tidiness, lighting, etc), work task (walking, carrying, pushing, lifting, etc), and human behavior (anticipation of hazards, adaptation to risks, risk taking, etc) must be accounted for in the assessment of slip and fall-related risks. Future directions of research must deal with modeling of basic tribophysical, biomechanical, and postural control process involved in slipping and falling.

  • PDF

Evaluation of Ductility and Damage Ratio for Reinforced Concrete Bridge Piers (철근콘크리트 교각의 연성과 손상도 평가)

  • Park, Chang-Gyu;Lee, Dae-Hyoung;Lee, Eun-Hee;Kim, Hoon;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.197-204
    • /
    • 2002
  • The resent earthquakes in worldwide have caused extensive damage to highway reinforced concrete bridge piers. It has been observed in the Korean Peninsula that the number of minor or low earthquake motions have increased year by year. Since the concern about the earthquake hazards is increased, the objective of this research is to evaluate the damage of reinforced concrete bridge piers subjected to probable earthquake motions. Experimental investigation was conducted to study the seismic performance of the full-scale specimens in size D=1.2m H=4.8m, which were constructed with different longitudinal lap splice and loading pattern, through the quasi-static test and the pseudo-dynamic test. It is thought that this result could contribute to establish the retrofit decision-making and disaster planning of reinforced concrete bridge piers in earthquake regions. And it could be also possible to quantify the damage of reinforced concrete bridge piers under cyclic loading

  • PDF

Multiprocess Discount Survival Models With Survival Times

  • Shim, Joo-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.277-288
    • /
    • 1997
  • For the analysis of survival data including covariates whose effects vary in time, the multiprocess discount survival model is proposed. The parameter vector modeling the time-varying effects of covariates is to vary between time intervals and its evolution between time intervals depends on the perturbation of the next time interval. The recursive estimation of the parameter vector can be obtained at the end of each time interval. The retrospective estimation of the survival function and the forecasting of the survival function of individuals of the specific covariates also can be obtained based on the information gathered until the end of the time interval.

  • PDF