• 제목/요약/키워드: dynamic fatigue

검색결과 611건 처리시간 0.023초

외부 연료탱크 수평 핀 동적거동이 피로수명에 미치는 영향 (The effect on fatigue life for dynamic behavior of external fuel tank horizontal fin)

  • 김근원;신기수
    • 한국항공우주학회지
    • /
    • 제40권3호
    • /
    • pp.209-214
    • /
    • 2012
  • 최근 F-5 항공기 외부 연료탱크 수평 핀의 균열결함이 크게 증가함에 따라 원인 규명이 필요하다. 본 연구에서는 수평 핀의 동적거동을 유한요소법을 이용하여 피로해석 측면에서 정량적으로 평가하였다. 이를 위해 스피드 브레이크(speed brake)에 의한 동하중 이력을 적용하여 시간영역과 주파수영역의 피로해석을 수행하였다. 연구결과 수평 핀은 동적거동 영향으로 피로수명이 감소되었음을 입증하였다.

반복 전단.인장 변형에 따른 데님 직물의 피로도에 관한 연구 (Fatigue Phenomenon of Mechanical Properties in Denim Fabrics for Slacks during Repeated Shear and Tensile Deformation)

  • 이창미;권오경;박희웅
    • 한국의류학회지
    • /
    • 제20권6호
    • /
    • pp.975-982
    • /
    • 1996
  • This study was conducted to examine the fatigue phenomenon of mechanical properites in denim fabrics for slacks during repeated shear and tensile deformation by analysing the change in the basic dynamic properties of fabrics on the basic of experiments to obtain the basic data necessary to measure their fatigue. In addition, this study was carried out by allowing these denim fabrics at market to go through the repeated deformation under such different loads as 500 gf/cm2 and 1000 gf/cm2 by using a simulated fatigue tester, by calculating both dynamic properties and hand value (HV) of these fabrics with KES-F system and then by obtaining the THV through these calculated properties. The results are as follows: 1 The fatigue phenomenon of dynamic properties was remarkably shown by the repeated shear and tensile deformation, while the increase of hysterical plastic substances was also remarkable in these shearing and bending properties. 2. The elasticity values of tensile, bending and compression properties, such as, B and G were reduced: whereas RT and RC values increased. It was shown, then, that those fabrics lost their elasticity and became flexible and soft with the increase of fatigue. 3. The fatigue phenomenon of hand value also showed that those fabrics became soft in relation with the change of all dynamic properties, and that their performance was also change to flexible hand value. 4. TRhe degree of fatigue was also shown by the loads given to the repeated deformation. It was shown that the fatigue was higher for the tensile load of 1000 gf/cm3 than did the standard load of 500 gf/cm3 It is necessary, therefore, to consider the load in accordance with their usage when examining the fatigue phenomenon with respect to the dynamic properties of clothing materials. 5. The loads were nearly not influenced by the change in the general hand value tended to show a little of increase with the increase of fatigue, Based on those results, it seems that the fatigue phenomonon is related to the loads given to the repeated deformation.

  • PDF

동적 특성을 고려한 차량 현가 시스템의 내구해석 기법 (Durability Analysis Technique of Automotive Suspension System Considering Dynamic Characteristics)

  • 한우섭;이혁재;임홍재;이상범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.336-341
    • /
    • 2003
  • In this paper, resonance durability analysis technique is presented for the fatigue life assessment considering dynamic effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the presented technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

  • PDF

구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석 (The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient)

  • 양성모;송준혁;강희용;노홍길
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

기능적 발목 불안정성시 하지 근피로에 의한 동적균형이 족저압에 미치는 영향 (The Effect of the Plantar Pressure on Dynamic Balance by Fatigue of Leg in the Subjects with Functional Ankle Instability)

  • 김호성
    • 한국콘텐츠학회논문지
    • /
    • 제16권1호
    • /
    • pp.734-742
    • /
    • 2016
  • 본 연구는 기능적 발목 불안정성시 하지 근피로도에 따른 동적균형이 족저압에 미치는 영향에 대해 알아보고자 하였다. 본 연구는 설문조사를 통해 기능적 발목 불안정성으로 진단된 14명의 발목불안정집단과 16명의 발목안정집단 총 30명을 대상으로 실시하였다. 하지의 근피로는 Biodex system III, 족저압은 Zebris FDM-S system으로 측정하였고, 한발로 점프 후 착지 검사로 동적균형을 실시하였다. 동적균형시 족저압 분포비율은 발목불안정집단의 전족부(p2, p3, p4)에서 높게 나타났다(p<0.05). 동적균형시 근피로 유발 전후 족저압 분포 비율은 발목 불안정집단에서 발목 안정집단보다 전족부(p2, p3, p4)와 외측 중족부(p6)에서 유의하게 높았으나 종골부(p7)에서는 낮았다(p<0.05). 동적균형시 족저압 중심(CoP)의 전후이동거리(AP)와 좌우이동 폭(ML)은 발목 불안정집단이 발목 안정집단에 비해 근피로 유발 전보다 유발 후 유의하게 길었다(p<0.05). 기능적 발목불안정시 하지 근피로도에 따른 동적균형은 족저압 분포와 족저압 중심이동에 영향을 준 것으로 사료된다. 향후, 기능적 발목 불안정이 있는 다양한 연령대를 대상으로 족저압 차이를 객관화, 척도화 시키는 연구가 이루어져야 할 것으로 사료된다.

도시철도차량 알루미늄 차체의 동적 하중 시험에 의한 피로 강도 평가 (Fatigue Strength Evaluation of the Aluminum Car body of Urban Transit Unit by Large Scale Dynamic Load Test)

  • 서승일;박춘수;신병천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1051-1055
    • /
    • 2003
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Structural integrity assessment for the carbody by static load test has been performed up to date. In this study, to evaluate fatigue strength of the aluminum carbody of urban transit unit. a testing method to simulate dynamic loading condition was proposed and the fatigue strength of the carbody was evaluated. The dynamic load test results showed that the alternating stress ranges were different from the estimated ranges based on the static test results. Excessive stress ranges at the center are thought to come from the flexible motion of the carbody. published fatigue test data for aluminum components, but variation of alternating acceleration along the length due to flexibility of carbody yielded unexpected results. Because fatigue strength based on the static test results may be overestimated at the center, modification of testing method is necessary.

  • PDF

Suspension System의 가속내구해석 (Accelerated Durability Analysis of Suspension System)

  • 민한기;정종안;양인영
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.168-173
    • /
    • 2002
  • The durability test, along with the crashworthiness test, requires the most time and expense in the vehicle development process. The durability design using CAE tools reduces the time required for both the durability test and actual vehicle production. Existing dynamic stress analyses designed fir the analysis of vehicle fatigue mainly calculate the dynamic stress history and fatigue after performing dynamic analysis and stress analysis with relevant software applications and then superpositioning the dynamic load history and stress influence coefficient at each joint. This approach is a complex process, taking into account the flexibility of the parts. It is, however, incapable of giving accurate consideration to the contacts between components, the non-linearity of materials, and tire-road surface interactions. This approach also requires that the analysts have an expertise in software applications of various kinds or an expert in each area must perform the analysis. This requires as a great deal of manpower and time. In order to complement the existing approaches for dynamic stress analysis, this study aims at the following: (1) to suggest the simple and accurate analysis technique which is capable of producing all the possible necessary results; (2) to reduce dramatically the time and manpower needed to construct a model designed to analyze dynamics, quasi-static stress, and fatigue; and (3) to enable an accurate analysis of fatigue by improving the accuracy of dynamic stress. we verify the presented analysis method through durability evaluation of the knuckle of passenger car.

차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구 (A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures)

  • 이상범;박태원;박종성;이선병;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1883-1888
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF

동적응답의 변화를 고려한 점용접부의 진동피로해석 (Vibration Fatigue Analysis for Multi-Point Spot-Welded SPCC Structure Considering Change of Dynamic Response)

  • 강기원;장일주;김정규
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1193-1199
    • /
    • 2010
  • 점용접은 자동차 산업에서 차체 구조물의 대표적 접합방법으로서 차량에 피로하중이 작용할 경우 구조물 전체의 파손 발생이전에 점용접부 일부에 조기 피로파손의 발생가능성이 존재한다. 이러한 점용접부의 국부적 파손은 차량 구조물의 동적 반응 및 이에 따른 피로거동의 변화를 야기할 가능성이 존재한다. 따라서 차량과 같이 스펙트럼하중을 받는 구조물의 피로수명 평가를 위해서는 이러한 점용접부의 국부적 파손에 의한 동적 반응의 변화를 고려하여야 한다. 본 논문에서는 점용접부의 누적피로손상으로 인한 동적반응의 변화를 고려한 진동피로해석을 수행하였다. 이에 필요한 S-N 선도는 전단 점용접 시험편에 대한 일정진폭 피로시험을 통하여 획득하였다. 또한 스펙트럼하중하의 점용접부의 피로수명은 유한요소해석에 기반한 진동피로해석을 통하여 평가하였다.