• 제목/요약/키워드: dynamic equations

검색결과 2,267건 처리시간 0.026초

Oscillatory Behavior of Linear Neutral Delay Dynamic Equations on Time Scales

  • Saker, Samir H.
    • Kyungpook Mathematical Journal
    • /
    • 제47권2호
    • /
    • pp.175-190
    • /
    • 2007
  • By employing the Riccati transformation technique some new oscillation criteria for the second-order neutral delay dynamic equation $$(y(t)+r(t)y({\tau}(t)))^{{\Delta}{\Delta}}+p(t)y(\delta(t))=0$$, on a time scale $\mathbb{T}$ are established. Our results as a special case when $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{N}$ improve some well known oscillation criteria for second order neutral delay differential and difference equations, and when $\mathbb{T}=q^{\mathbb{N}}$, i.e., for second-order $q$-neutral difference equations our results are essentially new and can be applied on different types of time scales. Some examples are considered to illustrate the main results.

  • PDF

6×6 자율주행 차량의 실시간 해석을 위한 연구 (A Study on the Real-Time Analysis of a 6×6 Autonomous Vehicle)

  • 조두호;이정한;이기창;유완석
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1433-1441
    • /
    • 2009
  • In multibody dynamic analysis, one of the most important problems is to reduce computation times for real-time simulation. This paper presents the derivation procedure of equations of motion of a 6${\times}$6 autonomous vehicle in terms of chassis local coordinates which do not require coordinates transformation matrix to enhance efficiency for real-time dynamic analysis. Also, equations of motion are derived using the VT(velocity transformation) technique and symbolic computation method coded by MATLAB. The Jacobian matrix of the equations of motion of a system is derived from symbolic operations to apply the implicit integration method. The analysis results were compared with ADAMS results to verify the accuracy and approve the feasibility of real time analysis.

EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL DYNAMIC EQUATIONS WITH DELAY ON TIME SCALES

  • GAO, ZHI-JUAN;FU, XU-YANG;LI, QIAO-LUAN
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.275-292
    • /
    • 2015
  • This paper is mainly concerned with the existence of solution for nonlinear impulsive fractional dynamic equations on a special time scale.We introduce the new concept and propositions of fractional q-integral, q-derivative, and α-Lipschitz in the paper. By using a new fixed point theorem, we obtain some new existence results of solutions via some generalized singular Gronwall inequalities on time scales. Further, an interesting example is presented to illustrate the theory.

ON THE OSCILLATION OF SECOND-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS ON TIME SCALES

  • Zhang, Quanxin;Sogn, Xia;Gao, Li
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.219-234
    • /
    • 2012
  • By using the generalized Riccati transformation and the inequality technique, we establish some new oscillation criterion for the second-order nonlinear delay dynamic equations $$(a(t)(x^{\Delta}(t))^{\gamma})^{\Delta}+q(t)f(x({\tau}(t)))=0$$ on a time scale $\mathbb{T}$, here ${\gamma}{\geq}1$ is the ratio of two positive odd integers with $a$ and $q$ real-valued positive right-dense continuous functions defined on $\mathbb{T}$. Our results not only extend and improve some known results, but also unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation.

OSCILLATION OF SECOND ORDER SUBLINEAR NEUTRAL DELAY DYNAMIC EQUATIONS VIA RICCATI TRANSFORMATION

  • SETHI, ABHAY KUMAR
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.213-229
    • /
    • 2018
  • In this work, we establish oscillation of the second order sublinear neutral delay dynamic equations of the form:$$(r(t)((x(t)+p(t)x({\tau}(t)))^{\Delta})^{\gamma})^{\Delta}+q(t)x^{\gamma}({\alpha}(t))+v(t)x^{\gamma}({\eta}(t))=0$$ on a time scale T by means of Riccati transformation technique, under the assumptions $${\displaystyle\smashmargin{2}{\int\nolimits^{\infty}}_{t_0}}\({\frac{1}{r(t)}}\)^{\frac{1}{\gamma}}{\Delta}t={\infty}$$, and ${\displaystyle\smashmargin{2}{\int\nolimits^{\infty}}_{t_0}}\({\frac{1}{r(t)}}\)^{\frac{1}{\gamma}}{\Delta}t$ < ${\infty}$, for various ranges of p(t), where 0 < ${\gamma}{\leq}1$ is a quotient of odd positive integers.

Arcjet Thruster 유동의 전산해석 (NUMERICAL FLOW FIELD ANALYSIS OF AN ARCJET THRUSTER)

  • 신재렬;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.101-105
    • /
    • 2006
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. The Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optically thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition to thermo-physical process inside the arcjet thruster is understood from the flow field results.

  • PDF

A Computer Method for the Dynamic Analysis of a System of Rigid Bodies in Plane Motion

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.193-202
    • /
    • 2004
  • This paper presents a computer method for the dynamic analysis of a system of rigid bodies in plane motion. The formulation rests upon the idea of replacing a rigid body by a dynamically equivalent constrained system of particles. Newton's second law is applied to study the motion of the resulting system of particles without introducing any rotational coordinates. A velocity transformation is used to transform the equations of motion to a reduced set. For an open-chain, this process automatically eliminates all of the non-working constraint forces and leads to an efficient integration of the equations of motion. For a closed-chain, suitable joints should be cut and few cut-joints constraint equations should be included. An example of a closed-chain is used to demonstrate the generality and efficiency of the proposed method.

Dynamic Modelling of Planar Mechanisms Using Point Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1977-1985
    • /
    • 2003
  • In the present study, the dynamic modelling of planar mechanisms that consist of a system of rigid bodies is carried out using point coordiantes. The system of rigid bodies is replaced by a dynamically equivalent constrained system of particles. Then for the resulting equivalent system of particles, the concepts of linear and angular momentums are used to generate the equations of motion without either introducing any rotational coordinates or distributing the external forces and force couples over the particles. For the open loop case, the equations of motion are generated recursively along the open chains. For the closed loop case, the system is transformed to open loops by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a multi-branch closed-loop system is chosen to demonstrate the generality and simplicity of the proposed method.

디지털 모델링 기법에 의한 1차원 연속계의 모드 해석 (Modal Analysis of One Dimensional Distributed Parameter Systems by Using the Digital Modeling Technique)

  • 홍성욱;조종환
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.103-112
    • /
    • 1999
  • A new modeling and analysis technique for one-dimensional distributed parameter systems is presented. First. discretized equations of motion in Laplace domain are derived by applying discretization methods for partial differential equations of a one-dimensional structure with respect to spatial coordinate. Secondly. the z and inverse z transformations are applied to the discretized equations of motion for obtaining a dynamic matrix for a uniform element. Four different discretization methods are tested with an example. Finally, taking infinite on the number of step for a uniform element leads to an exact dynamic matrix for the uniform element. A generalized modal analysis procedure for eigenvalue analysis and modal expansion is also presented. The resulting element dynamic matrix is tested with a numerical example. Another application example is provided to demonstrate the applicability of the proposed method.

  • PDF

RICCATI TRANSFORMATION AND SUBLINEAR OSCILLATION FOR SECOND ORDER NEUTRAL DELAY DYNAMIC EQUATIONS

  • Tripathy, Arun Kumar
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.1005-1021
    • /
    • 2012
  • This work is concerned with oscillation of the second order sublinear neutral delay dynamic equations of the form $$\(r(t)\;\((y(t)+p(t)y(a(t)))^{\Delta}\)^{\gamma}\)^{\Delta}+q(t)y^{\gamma}({\beta}(t))=0$$ on a time scale $\mathcal{T}$ by means of Riccati transformation technique, under the assumptions $\int^{\infty}_{t_0}\(\frac{1}{r(t)}\)^{\frac{1}{\gamma}}$ ${\Delta}t={\infty}$ and $\int^{\infty}_{t_0}\(\frac{1}{r(t)}\)^{\frac{1}{\gamma}}$ ${\Delta}t$ < ${\infty}$, where 0 < ${\gamma}{\leq}1$ is a quotient of odd positive integers.