
J. Appl. Math. & Informatics Vol. 33(2015), No. 3 - 4, pp. 275 - 292
http://dx.doi.org/10.14317/jami.2015.275

EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL

DYNAMIC EQUATIONS WITH DELAY ON TIME SCALES†

ZHI-JUAN GAO, XU-YANG FU, QIAO-LUAN LI∗

Abstract. This paper is mainly concerned with the existence of solution
for nonlinear impulsive fractional dynamic equations on a special time scale.
We introduce the new concept and propositions of fractional q-integral,

q-derivative, and α-Lipschitz in the paper. By using a new fixed point
theorem, we obtain some new existence results of solutions via some gener-
alized singular Gronwall inequalities on time scales. Further, an interesting
example is presented to illustrate the theory.
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1. Introduction

The theory of time scales, which has recently received a lot of attention,
was introduced by Stefan Hilger in his Ph.D. thesis in 1988, in order to unify
continuous and discrete analysis. A time scale is an arbitrary nonempty closed
subset of the real numbers. In recent years, there has been much research activity
concerning some different equations on time scales. We refer the reader to the
paper [3].

In the last few decades, fractional differential equations have gained consid-
erable importance and attention due to their applications in many engineering
and scientific disciplines as the mathematical modeling of systems and processes
in the fields of physics, mechanics, chemistry, aerodynamics, and the electrody-
namics of complex mediums. See the monographs of Kilbas, Miller and Ross
[10], Podlubny and the papers of Daftardar-Gejji and Jafari [6], Diethelm [5],
Lakshmikantham.
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The concept of fractional q-calculus is not new. Recently and after the ap-
pearance of time scale calculus(see for example [4]), some authors started to pay
attention and apply the techniques of time scale to discrete fractional calculus
[1,2] benefitting from the results announced before in [7].

In paper [11], JinRong Wang discussed the impulsive fractional differential
equations with order q ∈ (1, 2) as follows:

cDq
tu(t) = f(t, u(t)), t ∈ J ′ := J\{t1, . . . , tm}, J := [0, T ],

∆u(tk) = yk, ∆u′(tk) = yk, k = 1, 2, 3, ...,m,

u(0) = u0, u′(0) = u0, yk, yk ∈ R.
(1.1)

A unique solution u of (1.1) is given by

u(t) =



u0 + u0t+
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds, for t ∈ [0, t1),

...

u0 + u0t+

k∑
i=1

yi +

k∑
i=1

yi(t− ti)

+
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds, for t ∈ (tk, tk+1].

(1.2)

Motivated by the above result, we reconsider the existence of solution for
impulsive fractional dynamic equations with delay on time scales

∇ν
qu(t) = f(t, u(α(t)), u(β(t))), t ∈ T′

a := Ta\{t1, . . . , tm},

∆
(
u(tk)−G1(tk)

)
= Ik(u(tk)),

∆
(
∇qu(tk)−G2(tk)

)
= Jk(u(tk)), k = 1, 2, 3, ...,m,

u(0) = u0, ∇qu(0) = u0,

(1.3)

where a ∈ R+, ν ∈ (1, 2), q ∈ (0, 1), f : Ta × R× R → R is jointly continuous,
Ta = {t : t = aqn, n ∈ N0}∪{0}, N0 = {0, 1, 2, · · · }, Ik, Jk : R → R, tk satisfies
0 = t0 < t1 < · · · < tm < tm+1 = a, and α(t), β(t) ≤ t, u0, u0 are fixed real
numbers. For t ∈ Ta, we define the forward jump operator σ : Ta → Ta by
σ(t) := inf{s ∈ Ta : s > t}. For any function υ, we define

∆υ(tk) = υ(σ(tk))− υ(tk),

G1(t) =
1

Γq(ν)

∫ t

0

(t− qs)(ν−1)f(s, u(α(s)), u(β(s)))∇s,

G2(t) =
1− qν−1

(1− q)Γq(ν)

∫ t

0

(t− qs)(ν−2)f(s, u(α(s)), u(β(s)))∇s.

(1.4)

The rest of this paper is organized as follows. In Section 2, we give some
notations, recall some concepts and preparation results. In Section 3, we give
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four main results. At last, we give an example to demonstrate the application
of our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminaries. Through-
out this paper, let C(Ta,R) be the Banach space of all continuous functions from
Ta to R with the norm ∥u∥C := sup{|u(t)| : t ∈ Ta} for u ∈ C(Ta,R). We also
introduce the Banach space PC(Ta,R) = {u : Ta → R : u ∈ C((tk, tk+1],R), k =
0, 1, 2, . . . ,m with the norm ∥u∥PC := sup{|u(t)| : t ∈ Ta}}.

Let us recall the following known definitions. For more details see [2,13].

Definition 2.1. For a function f : T → R, the nabla q-derivative of f is

∇qf(t) =
f(qt)− f(t)

(q − 1)t
,

for all t ∈ T\{0}, q ∈ (0, 1).
The q-factorial function is defined in the following way.

Definition 2.2. If n is a positive integer, t, s ∈ T\{0}, q ∈ (0, 1), then

(t− s)(n) = (t− s)(t− qs)(t− q2s) · · · (t− qn−1s).

If ν is not a positive integer, then

(t− s)(ν) = tν
∞∏

n=0

1− s
t q

n

1− s
t q

ν+n
.

We state several properties of the q-factorial function.

Proposition 2.3. (i) (t− s)(β+γ) = (t− s)(β)(t− qβs)(γ),

(ii) (at− as)(β) = aβ(t− s)(β),
(iii) The nabla q-derivative of the q-factorial function with respect to t is

∇q(t− s)(ν) =
1− qν

1− q
(t− s)(ν−1),

(iv) The nabla q-derivative of the q-factorial function with respect to s is

∇q(t− s)(ν) = −1− qν

1− q
(t− qs)(ν−1),

where β, γ ∈ R.

Definition 2.4. The q-Gamma function is defined by

Γq(α) =
1

1− q

∫ 1

0

(
t

1− q
)α−1eq(qt)∇t,
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where α ∈ R\{. . . ,−2,−1, 0}, q ∈ (0, 1), eq(t) =
∞∏

n=0
(1− qnt), eq(0) = 1.

The q-Beta function is defined by

Bq(t, s) =

∫ 1

0

xt−1(1− qx)(s−1)∇x.

Proposition 2.5. (i) Γq(α+ 1) = 1−qα

1−q Γq(α), Γq(1) = 1, where α ∈ R+.

(ii) Bq(t, s) =
Γq(t)Γq(s)

Γq(t+ s)
.

Definition 2.6. The fractional q-integral is defined by

∇−ν
q (f(t)) =

1

Γq(ν)

∫ t

0

(t− qs)(ν−1)f(s)∇s,

where q ∈ (0, 1).

Definition 2.7. If X is a Banach space and B is a family of all its bounded
sets, the function α : B → R+ defined by α(B) = inf{d > 0 : B admits a
finite cover by sets of diameter ≤ d}, B ∈ B, is called the Kuratowski measure
of noncompactness.

Consider Ω ⊂ X and F : Ω → X is a continuous bounded map. We say
that F is α-Lipschitz, if there exists κ ≥ 0 such that α(F (B)) ≤ κα(B) for
all B ⊂ Ω bounded. If, in addition, κ < 1, then we say that F is strict α-
contraction.

We say that F is α-condensing if α(F (B)) < α(B) for all B ⊂ Ω bounded
with α(B) > 0. In other words, α(F (B)) ≥ α(B) implies α(B) = 0.

The class of all strict α-contractions F : Ω → X is denoted by C1
α(Ω) and

the class of all α-condensing maps F : Ω → X is denoted by C2
α(Ω). We remark

that C1
α(Ω) ⊂ C2

α(Ω) and every F ∈ C2
α(Ω) is α-Lipschitz with constant κ = 1.

Proposition 2.8. If F, G : Ω → X are α-Lipschitz maps with constants κ,
respectively κ′, then F +G : Ω → X are α-Lipschitz with constant κ+ κ′.

Proposition 2.9. If F : Ω → X is compact, then F is α-Lipschitz with con-
stant κ = 0.

Proposition 2.10. If F : Ω → X is Lipschitz with constant κ, then F is α-
Lipschitz with the same constant κ.

Theorem 2.11 (PC-type Ascoli-Arzela theorem, Theorem 2.1 of [12]). Let X be
a Banach space and W ⊂ PC(J,X). If the following conditions are satisfied:
(i) W is uniformly bounded subset of PC(J,X);
(ii) W is equicontinuous in (tk, tk+1), k = 0, 1, · · · ,m, where t0 = 0, tm+1 = T ;
(iii) W(t) = {u(t)|u ∈ W, t ∈ J\{t1, · · · , tm}}, W(t+k ) = {u(t+k )|u ∈ W} and

W(t−k ) = {u(t−k )|u ∈ W} is a relatively compact subsets of X,
then W is a relatively compact subset of PC(J,X).
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Theorem 2.12 (Theorem 2, [8]). Let F : X → X be α-condensing and
S = {x ∈ X : exists λ ∈ [0, 1] such that x = λFx}.

If S is a bounded set in X, so there exists r > 0 such that S ⊂ Br(0), then F has
at least one fixed point and the set of the fixed points of F lies in Br(0).

For measurable functions m : Ta → R, define the norm

∥m∥Lp(Ta) =


(∫

Ta

|m(t)|pdt
) 1

p

, 1 ≤ p < ∞,

inf
µ(Ta)=0

{sup |m(t)|}, p = ∞, t ∈ Ta − Ta,

where µ(Ta) is the Lebesgue measure on Ta. Let L
p(Ta,R) be the Banach space

of all Lebesgue measurable functions m : Ta → R with ∥m∥Lp(Ta) < ∞.

Theorem 2.13 (Hölder’s inequality). Assume that 1 ≤ p, q ≤ ∞ and 1
p+

1
q = 1.

For any l ∈ Lp(Ta,R) and m ∈ Lq(Ta,R), lm ∈ L1(Ta,R) with ∥lm∥L1(Ta) ≤
∥l∥Lp(Ta)∥m∥Lq(Ta).

Lemma 2.14. Suppose u(t), b(t), g(t), f(t) are nonnegative on Ta, b(t) is non-
decreasing and locally integrable on Ta, g(t), f(t) are nondecreasing and contin-
uous on Ta, a ∈ R+, and h(t) := g(t)+f(t) ≤ M0 < 1

aν(1−q)Γq(ν)
for any ν > 1.

If

u(t) ≤ b(t) + g(t)

∫ t

0

(t− qs)(ν−1)u(α(s))∇s+ f(t)

∫ t

0

(t− qs)(ν−1)u(β(s))∇s

for any α, β : Ta → Ta with α(t) ≤ t, β(t) ≤ t, then

u(t) ≤ b(t) +

∫ t

0

[ ∞∑
n=1

(h(t)Γq(ν))
n

Γq(nν)
(t− qs)(nν−1)b(s)

]
∇s ∀ t ∈ Ta.

Proof. Let

z(t) := b(t) + g(t)

∫ t

0

(t− qs)(ν−1)u(α(s))∇s+ f(t)

∫ t

0

(t− qs)(ν−1)u(β(s))∇s.

Since α(t) ≤ t, β(t) ≤ t, we have

u(α(t)) ≤ z(α(t)) ≤ z(t) and u(β(t)) ≤ z(β(t)) ≤ z(t),

then

z(t) ≤ b(t) + h(t)

∫ t

0

(t− qs)(ν−1)z(s)∇s,

where h(t) := g(t) + f(t), h(t) is a nondecreasing continuous function.

Let Dϕ(t) := h(t)
∫ t

0
(t− qs)(ν−1)ϕ(s)∇s, t ∈ Ta, for locally integrable functions

ϕ. Then

z(t) ≤ b(t) +Dz(t),
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implies

z(t) ≤
n−1∑
k=0

Dkb(t) +Dnz(t).

Let us prove that

Dnz(t) ≤
∫ t

0

(h(t)Γq(ν))
n

Γq(nν)
(t− qs)(nν−1)z(s)∇s, (2.1)

and Dnz(t) → 0 as n → +∞ for each t ∈ Ta.
We know this relation (2.1) is true for n = 1. Assume that it is true for some

n = k, that is

Dkz(t) ≤
∫ t

0

(h(t)Γq(ν))
k

Γq(kν)
(t− qs)(kν−1)z(s)∇s.

If n = k + 1, then the induction hypothesis implies

Dk+1z(t) ≤ h(t)

∫ t

0

(t− qs)(ν−1)
[ ∫ s

0

(h(s)Γq(ν))
k

Γq(kν)
(s− qτ)(kν−1)z(τ)∇τ

]
∇s,

since h(t) is nondecreasing, it follows that

Dk+1z(t) ≤

(
h(t)

)k+1(
Γq(ν)

)k

Γq(kν)

∫ t

0

(t− qs)(ν−1)
[ ∫ s

0

(s− qτ)(kν−1)z(τ)∇τ
]
∇s.

By interchanging the order of integration (see [9]), we have

Dk+1z(t) ≤

(
h(t)Γq(ν)

)k+1

Γq((k + 1)ν)

∫ t

0

(t− qτ)((k+1)ν−1)z(τ)∇τ,

where the integral∫ t

σ(τ)

(t− qs)(ν−1)(s− qτ)(kν−1)∇s

=

∫ t

σ(τ)

(t− qs)(ν−1)(s− qτ)(kν)−1∇s

≤ (t− qτ)(ν−1)(t− qτ)(kν)
∫ 1

0

(1− qz)(ν−1)zkν−1∇z,

(2.2)

since (t−s)(ν) is decreasing about s, we have (t−qτ)(kν) ≤ (t−qντ)(kν), ν > 1,
and by Proposition 2.3 and Definition 2.4, we get

(t− qτ)(ν−1)(t− qτ)(kν)
∫ 1

0

(1− qz)(ν−1)zkν−1∇z

≤ (t− qτ)((k+1)ν−1)Bq(kν, ν).
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The relation (2.1) is proved. By (2.1) and h(t) ≤ M0, we have

Dnz(t) ≤
∫ t

0

(
aνΓq(ν)M0

)n

Γq(nν)
z(s)∇s.

Since M0 < 1
aν(1−q)Γq(ν)

and by Proposition 2.5, we get

∫ t

0

(
aνΓq(ν)M0

)n

Γq(nν)
z(s)∇s → 0,

as n → ∞, for t ∈ Ta. Then the Lemma 2.14 is proved. �
Lemma 2.15. Let ν ∈ (1, 2) and h : Ta → R be jointly continuous. A function
u given by

u(t) =



u0 + u0t+G1(t), for t ∈ [0, t1],

u0 + u0t+G1(t) +
k∑

i=1

Ji(u(ti))(t− σ(ti)) +
k∑

i=1

Ii(u(ti))

+ (q − 1)
k∑

i=1

σ(ti)(u0 +
i∑

j=1

Jj(u(tj))), for t ∈ (tk, tk+1],

(2.3)

is the unique solution of the following impulsive problem on time scales

∇ν
qu(t) = h(t), t ∈ T′

a := Ta\{t1, . . . , tm},

∆
(
u(tk)−G1(tk)

)
= Ik(u(tk)),

∆
(
∇qu(tk)−G2(tk)

)
= Jk(u(tk)),

u(0) = u0, ∇qu(0) = u0,

(2.4)

where Ta = {t : t = aqn, n ∈ N0}∪{0}, a ∈ R+, q ∈ (0, 1), N0 = {0, 1, 2, · · · }, k =
1, 2, 3, · · · ,m, Ik, Jk : R → R, tk satisfy 0 = t0 < t1 < · · · < tm < tm+1 =
a. σ : Ta → Ta is the forward jump operator σ(t) := inf{s ∈ Ta : s > t}. And
for any function υ, we define

∆υ(tk) = υ(σ(tk))− υ(tk),

G1(t) =
1

Γq(ν)

∫ t

0

(t− qs)(ν−1)h(s)∇s,

G2(t) =
1− qν−1

(1− q)Γq(ν)

∫ t

0

(t− qs)(ν−2)h(s)∇s.

Proof. Assume the general solution u of the Eq. (2.4) is given by

u(t) = G1(t) +Ak +Bkt, t ∈ (tk, tk+1], k = 0, 1, 2, · · · ,m, (2.5)

where t0 = 0, tm+1 = a. Then, we have

∇qu(t) = G2(t) +Bk, t ∈ (tk, tk+1], k = 0, 1, 2, · · · ,m. (2.6)
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Applying the cauchy conditions of (2.4), we get

A0 = u0, B0 = u0. (2.7)

Next, using the impulsive condition of (2.4), we find that

Bk = Bk−1 + Jk(u(tk)), (2.8)

which by (2.7) implies

Bk = u0 +
k∑

i=1

Ji(u(ti)), k = 1, 2, · · · ,m. (2.9)

Furthermore, using the impulsive condition of (2.4), we find that

Ak = Ak−1 + σ(tk)(q − 1)Bk−1 − σ(tk)Jk(u(tk)) + Ik(u(tk)), (2.10)

which implies

Ak = u0 +

k∑
i=1

(
σ(ti)(q − 1)Bi − σ(ti)Ji(u(ti)) + Ii(u(ti))

)
. (2.11)

So by (2.9), (2.11), we have

Ak +Bkt = u0 + u0t+

k∑
i=1

(t− σ(ti))Ji(u(ti)) +

k∑
i=1

Ii(u(ti))

+

k∑
i=1

σ(ti)(q − 1)(u0 +

i∑
j=1

Jj(u(tj))).

Thus, we can get (2.3).
Conversely, assume that u satisfies (2.3). By a direct computation, it follows

that the solution given by (2.3) satisfies (2.4). This completes the proof. �

3. Main results

In this section, we deal with the existence and uniqueness of solutions for the
problem (1.3).

Before stating and proving the main results, we introduce the following hy-
potheses:
[H1] f : Ta × R× R → R is jointly continuous.
[H2] For arbitrary (t, u, v) ∈ Ta × R× R, there exist L1, L2 > 0, such that

|f(t, u, v)| ≤ L1|u|+ L2|v|.

[H3] There exist q1, q2 ∈ (0, 1), real functions h ∈ L
1
q1 (Ta,R), y ∈ L

1
q2 (Ta,R) such

that

|f(t, u1(α(t)), u1(β(t)))− f(t, u2(α(t)), u2(β(t)))|
≤h(t)|u1(α(t))− u2(α(t))|+ y(t)|u1(β(t))− u2(β(t))|,

for all t ∈ Ta and u1(·), u2(·) ∈ R.
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[H4] There exist constants L3, L4 > 0, such that

∥Ik(u)− Ik(v)∥ ≤ L3∥u− v∥, ∥Jk(u)− Jk(v)∥ ≤ L4∥u− v∥,

for all u, v ∈ R, and k = 1, 2, · · · ,m.
[H5] For arbitrary u ∈ R, there exist constants M1,M2 > 0, such that

∥Ik(u)∥ ≤ M1, ∥Jk(u)∥ ≤ M2, k = 1, 2, · · · ,m.

Theorem 3.1. Assume that [H1]-[H5] hold, and if L1 +L2 < 1
aν(1−q) , then the

problem (1.3) has at least one solution on Ta.

Proof. By Lemma 2.15, we define an operator T : PC(Ta,R) → PC(Ta,R) by

Tu)(t) = u0 + u0t+G1(u, t) +

k∑
i=1

Ji(u(ti))(t− σ(ti)) +

k∑
i=1

Ii(u(ti))

+ (q − 1)
k∑

i=1

σ(ti)(u0 +
i∑

j=1

Jj(u(tj))),

(3.1)

for t ∈ (tk, tk+1], k = 0, 1, 2, · · · ,m, where

G1(u, t) =
1

Γq(ν)

∫ t

0

(t− qs)(ν−1)f(s, u(α(s)), u(β(s)))∇s.

For the sake of convenience, we subdivide the proof into several steps.
Step 1. T is continuous.
Let {un} be a sequence such that un → u in PC(Ta,R). Then for each t ∈
(tk, tk+1], by conditions [H3], [H4], we have

|(T un)(t)− (T u)(t)|

≤ 1

Γq(ν)

∫ t

0

(t− qs)(ν−1)h(s)|un(α(s))− u(α(s))|∇s

+
1

Γq(ν)

∫ t

0

(t− qs)(ν−1)y(s)|un(β(s))− u(β(s))|∇s

+ L4

k∑
i=1

(t− σ(ti))∥un(ti)− u(ti)∥+ L3

k∑
i=1

∥un(ti)− u(ti)∥

+ L4(1− q)
k∑

i=1

σ(ti)(
i∑

j=1

∥un(tj)− u(tj)∥).

Further, we can obtain

∥(T un)(t)− (T u)(t)∥PC → 0, n → ∞.

Step 2. T maps bounded sets into bounded sets in PC(Ta,R).
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For each u ∈ Bη = {u ∈ PC(Ta,R) : ∥u∥PC ≤ η}, t ∈ (tk, tk+1], by [H2],
[H5], we have

|(T u)(t)| ≤ |u0|+ a|u0|+ (1− q)

k∑
i=1

σ(ti)(|u0|+ iM2)

+
η(L1 + L2)(1− q)aν

Γq(ν)(1− qν)
+M2

k∑
i=1

(a− σ(ti)) +mM1.

Let ℓ := |u0|+ a|u0|+M2

k∑
i=1

(a− σ(ti)) +mM1 + (1− q)
k∑

i=1

σ(ti)(|u0|+ iM2) +

η(L1+L2)(1−q)aν

Γq(ν)(1−qν) , we get

∥(T u)(t)∥PC ≤ ℓ.

Step 3. T maps bounded sets into equicontinuous sets of PC(Ta,R).
It is easy to know T is equicontinuous on interval (tk, tk+1], k = 1, 2, · · · ,m.
For any 0 ≤ s1 < s2 ≤ t1, u ∈ Bη = {u ∈ PC(Ta,R) : ∥u∥PC ≤ η}, we have

|(T u)(s2)− (T u)(s1)|

≤ |u0||s2 − s1|+
1

Γq(ν)

∣∣∣∣∫ s2

s1

(s2 − qs)(ν−1)f(s, u(α(s)), u(β(s)))∇s

∣∣∣∣
+

1

Γq(ν)

∣∣∣∣∫ s1

0

(
(s2 − qs)(ν−1) − (s1 − qs)(ν−1)

)
f(s, u(α(s)), u(β(s)))∇s

∣∣∣∣ ,
considering s2 → s1, we have

|(T u)(s2)− (T u)(s1)| → 0.

Thus, we find that T is equicontinuous on Ta.
Step 4. Now it remains to show that the set

E(T ) := {u ∈ PC(Ta,R) : u = λT u, λ ∈ (0, 1)}

is bounded.
Without loss of generality, for any u ∈ E(T ), t ∈ (tk, tk+1], by [H2], [H5], we

have

|u(t)| ≤ |u0|+ a|u0|+
L1

Γq(ν)

∫ t

0

(t− qs)(ν−1)|u(α(s))|∇s

+M2

k∑
i=1

(a− σ(ti)) + (1− q)
k∑

i=1

σ(ti)(|u0|+ iM2)

+mM1 +
L2

Γq(ν)

∫ t

0

(t− qs)(ν−1)|u(β(s))|∇s,

where k = 0, 1, 2, · · · ,m.
By Lemma 2.14, there exists a Mk > 0 such that

|u(t)| ≤ Mk, t ∈ (tk, tk+1].



Existence of solution for impulsive fractional dynamic equations 285

Set M = max
0≤k≤m

Mk, thus for every t ∈ Ta, we get

∥u(t)∥PC ≤ M, t ∈ (tk, tk+1].

This shows that the set E(T ) is bounded.
As a consequence of Schaefer’s fixed point theorem, we know that T has a

fixed point which is a solution of the problem (1.3). The proof is complete. �

Theorem 3.2. Assume that [H1],[H3] and [H4] hold, and if

1 > L4

k∑
i=1

(a− σ(ti)) +mL3 + (1− q)L4

k∑
i=1

σ(ti)i

+
∥h∥

L
1
q1 (Ta)

Γq(ν)

(∫ a

0

[
(a− qs)(ν−1)

] 1
1−q1 ∇s

)1−q1

+
∥y∥

L
1
q2 (Ta)

Γq(ν)

(∫ a

0

[
(a− qs)(ν−1)

] 1
1−q2 ∇s

)1−q2

,

(3.2)

then the problem (1.3) has an unique solution on Ta.

Proof. Consider the operator T : PC(Ta,R) → PC(Ta,R) defined as (3.1),
and transform the problem (1.3) into a fixed point problem of T .
Step 1. T u ∈ PC(Ta,R) for every u ∈ PC(Ta,R).
If t = 0, for any δ > 0, we have

|(T u)(δ)− (T u)(0)| = |u0δ +G1(u, δ) + δ ·
k∑

i=1

Ji(u(ti))|

≤ |u0|δ +
1

Γq(ν)

∫ δ

0

(δ − qs)(ν−1)|f(s, u(α(s)), u(β(s)))|∇s

+ δ ·
k∑

i=1

|Ji(u(ti))|,

then

|(T u)(δ)− (T u)(0)| → 0, as δ → 0.

Thus, we find that T u is continuous at 0. It is easy to see that T u ∈ C((tk, tk+1],R),
k = 0, 1, · · · ,m.

From the above discussion, we get T u ∈ PC(Ta,R) for every u ∈ PC(Ta,R).
Step 2. T is a contraction operator on PC(Ta,R).
In fact, for arbitrary u1, u2 ∈ PC(Ta,R), by [H3], [H4] and Theorem 2.13, we
obtain

|(T u1)(t)− (T u2)(t)|

≤

{∥h∥
L

1
q1 (Ta)

Γq(ν)

(∫ a

0

[
(a− qs)(ν−1)

] 1
1−q1 ∇s

)1−q1
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+
∥y∥

L
1
q2 (Ta)

Γq(ν)

(∫ a

0

[
(a− qs)(ν−1)

] 1
1−q2 ∇s

)1−q2

+ L4

k∑
i=1

(a− σ(ti)) +mL3 + (1− q)L4

k∑
i=1

σ(ti)i

}
∥u1 − u2∥PC .

Thus, due to (3.2), we know that T is a contraction mapping on PC(Ta,R).
By applying the well-known Banach’s contraction mapping principle, we get

that the operator T has a unique fixed point on PC(Ta,R). Therefore, the prob-
lem (1.3) has a unique solution. �

Before proving the next results, we introduce the following hypotheses.
[H2]′ For arbitrary (t, u, v) ∈ Ta×R×R, there exist C1

f , C
2
f ,Mf > 0, and q1, q2 ∈

[0, 1) such that
|f(t, u, v)| ≤ C1

f |u|q1 + C2
f |v|q2 +Mf .

[H3]′ There exist C3
f , C

4
f > 0, such that

|f(t, u1(α(t)), u1(β(t)))− f(t, u2(α(t)), u2(β(t)))|
≤ C3

f |u1(α(t))− u2(α(t))|+ C4
f |u1(β(t))− u2(β(t))|,

for each t ∈ Ta, and all u1, u2 ∈ R.
[H4]′ There exist constants Ck

I , C
k
J > 0, such that

∥Ik(u)− Ik(v)∥ ≤ Ck
I ∥u− v∥, ∥Jk(u)− Jk(v)∥ ≤ Ck

J∥u− v∥,
for all u, v ∈ R, and k = 1, 2, · · · ,m.
[H5]′ For arbitrary u ∈ R, there exist constants CI , CJ > 0 and q3, q4 ∈ [0, 1) such
that

|Ik(u)| ≤ CI |u|q3 , |Jk(u)| ≤ CJ |u|q4 , k = 1, 2, · · · ,m.

Theorem 3.3. Assume that [H1] and [H2]′-[H5]′ hold, and if
m∑

k=1

Nk ∈ (0, 1), (3.3)

where Nk :=
k∑

i=1

(a− σ(ti))C
i
J +

k∑
i=1

Ci
I + (1− q)

k∑
i=1

σ(ti)(
i∑

j=1

Cj
J),

then the promble (1.3) has at least one solution u ∈ PC(Ta,R) and the set of
the solutions of the problem (1.3) is bounded in PC(Ta,R).

Proof. Now, we define the operators as follows:
H : PC(Ta,R) → PC(Ta,R) given by

(Hu)(t) := u0 + u0t+ (q − 1)
k∑

i=1

σ(ti)(u0 +
i∑

j=1

Jj(u(tj))) +
k∑

i=1

Ii(u(ti))

+

k∑
i=1

Ji(u(ti))(t− σ(ti)), t ∈ (tk, tk+1], k = 0, 1, 2, · · · ,m.
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G : PC(Ta,R) → PC(Ta,R) given by

(Gu)(t) := G1(u, t), t ∈ (tk, tk+1], k = 0, 1, 2, · · · ,m,

where G1(u, t) is defined as in (3.1).
Let F : PC(Ta,R) → PC(Ta,R) given by

Fu = Hu+ Gu.
Thus, the existence of a solution for the problem (1.3) is equivalent to the exis-
tence of a fixed point for operator F .

Step 1. The operator H is Lipschitz with constant κ1 =
m∑

k=1

Nk, by Proposition

2.10, consequentlyH is α-Lipschitz with the same constant κ1 =
m∑

k=1

Nk. Moreover,

the operator H satisfies the following growth condition:

∥Hu∥PC ≤ |u0|+ |u0|a+ CJ∥u∥q4
k∑

i=1

(a− σ(ti)) +mCI∥u∥q3

+ (1− q)
k∑

i=1

σ(ti)(|u0|+ iCJ∥u∥q4).

(3.4)

For every t ∈ [0, t1], u, v ∈ PC(Ta,R), it is obvious that

|(Hu)(t)− (Hv)(t)| = 0.

If t ∈ (tk, tk+1], k = 1, 2, · · · ,m, u, v ∈ PC(Ta,R), by [H4]′, we have

|(Hu)(t)− (Hv)(t)|

≤
[ k∑

i=1

(a− σ(ti))C
i
J +

k∑
i=1

Ci
I + (1− q)

k∑
i=1

σ(ti)(

i∑
j=1

Cj
J)
]
∥u− v∥PC .

Let Nk :=
k∑

i=1

(a− σ(ti))C
i
J +

k∑
i=1

Ci
I + (1− q)

k∑
i=1

σ(ti)(
i∑

j=1

Cj
J ).

For every u, v ∈ PC(Ta,R), t ∈ (tk, tk+1], k = 1, 2, 3, · · · ,m. Using [H4]′ step
by step, and by Proposition 2.8 and Proposition 2.10, we know that H is α-

Lipschitz with the constant κ1 =
m∑

k=1

Nk. And by [H5]′, we get (3.4).

Step 2. The operator G is compact, by Proposition 2.9, then G is α-Lipschitz
with constant κ2 = 0.
In order to prove the compactness of G, we consider a bounded set E ⊆ C((tk, tk+1),
R),k = 0, 1, 2, · · · ,m, and we will show that G(E) is relatively compact in
C((tk, tk+1]) with the help of Theorem 2.11.
(i) For t ∈ [0, t1], let un be a sequence on E ⊆ C([0, t1],R), for every un ∈ E, by
[H2]′, we have

∥Gun∥C([0,t1],R) ≤ (C1
f∥un∥q1C([0,t1],R) + C2

f∥un∥q2C([0,t1],R) +Mf )
(1− q)aν

(1− qν)Γq(ν)
,
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thus, the set G(E) is bounded in C([0, t1]).
For each (tk, tk+1], k = 1, 2, 3, · · · ,m, repeating the above process again, one can
obtain that the set G(E) is an uniformly bounded subset of PC(Ta,R).
(ii) For t ∈ (tk, tk+1], k = 1, 2, · · · ,m, it is easy to know Gun is equicontinuous.
For any 0 ≤ s1 < s2 ≤ t1, un ∈ E, we have

|(Gun)(s2)− (Gun)(s1)|

≤ 1

Γq(ν)

∣∣∣ ∫ s1

0

(
(s2 − qs)(ν−1) − (s1 − qs)(ν−1)

)
f(s, un(α(s)), un(β(s)))∇s

∣∣∣
+

1

Γq(ν)

∣∣∣ ∫ s2

s1

(s2 − qs)(ν−1)f(s, un(α(s)), un(β(s)))∇s
∣∣∣,

then

|(Gun)(s2)− (Gun)(s1)| → 0, as s2 → s1.

Thus, we find that G is equicontinuous on Ta. From (i), (ii), we get the com-
pactness of the operator G on PC(Ta,R).

By Proposition 2.9, we know that the operator G is α-Lipschitz with constant
0.
Step 3. The operator G is continuous. Moreover, by [H2]′, the operator G
satisfies the following growth condition:

∥Gu∥PC ≤ (C1
f∥u∥

q1
PC + C2

f∥u∥
q2
PC +Mf )

(1− q)aν

(1− qν)Γq(ν)
. (3.5)

Let {un} be a sequence such that un → u in PC(Ta,R). Then for each
t ∈ (tk, tk+1], by condition [H3]′, we have

|(Gun)(t)− (Gu)(t)|

≤
C3

f

Γq(ν)

∫ t

0

(t− qs)(ν−1)|un(α(s))− u(α(s))|∇s

+
C4

f

Γq(ν)

∫ t

0

(t− qs)(ν−1)|un(β(s))− u(β(s))|∇s.

Further, we can obtain

|(Gun)(t)− (Gu)(t)| → 0, n → ∞.

We know that the operator G is continuous on (tk, tk+1], k = 0, 1, · · · ,m.
Step 4. From Step 1 and Step 2, by Proposition 2.8 and condition (3.3), we ob-

tain that the operator F is strict α-contraction with constant κ =
m∑

k=1

Nk. Further,

by Definition 2.7, we finally get that the operator F is a α-condensing map.
Step 5. Let E(F) := {u ∈ PC(Ta,R) : ∃ λ ∈ (0, 1) such that u = λFu}.
Consider every u ∈ E(F), by (3.4),(3.5), we have
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∥u∥PC ≤ λ
(
CJ∥u∥q4PC

k∑
i=1

(a− σ(ti)) + (1− q)
k∑

i=1

σ(ti)(|u0|+ iCJ∥u∥q4PC)

+mCI∥u∥q3PC + (C1
f∥u∥q1PC + C2

f∥u∥q2PC +Mf )
(1− q)aν

(1− qν)Γq(ν)

+ |u0|+ |u0|a
)

:= m(∥u∥PC).

(3.6)

This inequality, together with qi ∈ [0, 1), i = 1, 2, 3, 4, shows us that E(F) is
bounded in PC(Ta,R). If not, we suppose by contradiction ξ := ∥u∥PC → ∞.

Dividing both sides of (3.6) by ξ, and taking ξ → ∞, we get

1 ≤ lim
ξ→∞

m(ξ)

ξ
= 0,

this is a contraction.
From above, by Theorem 2.12, we deduce that the operator F has at least

one fixed point and the set of the fixed points of F is bounded in PC(Ta,R). �

Theorem 3.4. Assume that [H1], [H2]′-[H5]′ and condition (3.3) hold, and if

C3
f + C4

f

1−Nk
<

1

aν(1− q)
,

then the problem (1.3) has a unique solution u ∈ PC(Ta,R).

Proof. By Theorem 3.3, the problem (1.3) has at least one solution. Now, let
u(.), v(.) be the solutions of problem (1.3) with the same initial values,

u(0) = v(0) = u0, ∇qu(0) = ∇qv(0) = u0,

by [H3]′, [H4]′, then

|u(t)− v(t)|

≤ Nk∥u− v∥PC +
C3

f

Γq(ν)

∫ t

0

(t− qs)(ν−1)|u(α(s))− v(α(s))|∇s

+
C4

f

Γq(ν)

∫ t

0

(t− qs)(ν−1)|u(β(s))− v(β(s))|∇s,

(3.7)

then

∥u− v∥PC ≤ Nk∥u− v∥PC +
C3

f

Γq(ν)

∫ t

0

(t− qs)(ν−1)|u(α(s))− v(α(s))|∇s

+
C4

f

Γq(ν)

∫ t

0

(t− qs)(ν−1)|u(β(s))− v(β(s))|∇s.

(3.8)

From condition (3.3), (3.8), we obtain
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|u(t)− v(t)|

≤
C3

f

(1−Nk)Γq(ν)

∫ t

0

(t− qs)(ν−1)|u(α(s))− v(α(s))|∇s

+
C4

f

(1−Nk)Γq(ν)

∫ t

0

(t− qs)(ν−1)|u(β(s))− v(β(s))|∇s.

(3.9)

Due to Lemma 2.14, we get
u(t) = v(t), for each t ∈ Ta, and all u, v ∈ R.

The proof is complete. �

Next, we give an example to illustrate the usefulness of our main results.

Example 3.5. Let us consider the following fractional impulsive problem with
delay on time scales

∇
3
2
1
3

u(t) =
u(α(t))

(1 + et)(1 + u(α(t)))
+

u(β(t))

(1 + emt)(1 + u(β(t)))
, t ∈ T1\{

1

9
,
1

81
},

∆
(
u(

1

9
) − G1(

1

9
)
)

=
1

2(1 + u( 1
9 ))

, ∆
(
∇qu(

1

9
) − G2(

1

9
)
)

=
2

5(3 + u( 1
9 ))

,

∆
(
u(

1

81
) − G1(

1

81
)
)

=
7

8(2 + u( 1
81 ))

, ∆
(
∇qu(

1

81
) − G2(

1

81
)
)

=
3

4(9 + u( 1
81 ))

,

u(0) = 4, ∇ 1
3
u(0) = 11,

(3.10)

where m > 0, is a constant, G1(.), G2(.) are defined as in (1.4).
Let

f(t, u(α(t)), u(β(t))) =
u(α(t))

(1 + et)(1 + u(α(t)))
+

u(β(t))

(1 + emt)(1 + u(β(t)))
.

Obviously, for all u ∈ C(T1,R+) and each t ∈ T1, we have

|f(t, u(α(t)), u(β(t)))| ≤ |u(α(t))|
(1 + et)|1 + u(α(t))|

+
|u(β(t))|

(1 + emt)|1 + u(β(t))|

≤ 1

2
|u(α(t))|+ 1

2
|u(β(t))|,

where L1 = 1
2 , L2 = 1

2 ,

it is easy to know that L1 + L2 = 1 < 3
2 = 1

1
3
2 (1− 1

3 )
.

For u1, u2 ∈ C(T1,R+) and t ∈ T1, we get

|f(t, u1(α(t)), u1(β(t)))− f(t, u2(α(t)), u2(β(t)))|

≤ 1

1 + et
|u1(α(t))− u2(α(t))|

(1 + u1(α(t)))(1 + u2(α(t)))
+

1

1 + emt

|u1(β(t))− u2(β(t))|
(1 + u1(β(t)))(1 + u2(β(t)))

,

where 1
1+et ∈ L

3
2 (T1,R), 1

1+emt ∈ L3(T1,R).
Set

I1(u(
1

9
)) =

1

2(1 + u( 19 ))
, I2(u(

1

81
)) =

7

8(2 + u( 1
81 ))

,
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we have

∥I1(u(
1

9
))∥ ≤ 1

2
, ∥I2(u(

1

81
))∥ ≤ 7

16
,

and for every u, v ∈ C(T1,R+), we get

∥I1(u(
1

9
))− I1(v(

1

9
))∥ = ∥ 1

2(1 + u( 19 ))
− 1

2(1 + v( 19 ))
∥ ≤ 1

2
∥u(1

9
)− v(

1

9
)∥,

∥I2(u(
1

81
))−I2(v(

1

81
))∥ = ∥ 7

8(2 + u( 1
81 ))

− 7

8(2 + v( 1
81 ))

∥ ≤ 7

32
∥u( 1

81
)−v(

1

81
)∥.

Set

J1(u(
1

9
)) =

2

5(3 + u( 19 ))
, J2(u(

1

81
)) =

3

4(9 + u( 1
81 ))

,

we have

∥J1(u(
1

9
))∥ ≤ 2

15
, ∥J2(u(

1

81
))∥ ≤ 1

12
,

and for every u, v ∈ C(T1,R+), we get

∥J1(u(
1

9
))− J1(v(

1

9
))∥ = ∥ 2

5(3 + u( 19 ))
− 2

5(3 + v( 19 ))
∥ ≤ 2

45
∥u(1

9
)− v(

1

9
)∥,

∥J2(u(
1

81
))−J2(v(

1

81
))∥ = ∥ 3

4(9 + u( 1
81 ))

− 3

4(9 + v( 1
81 ))

∥ ≤ 1

108
∥u( 1

81
)−v(

1

81
)∥.

Thus, all the assumptions in Theorem 3.1 are satisfied. Eq. (3.10) has at least
one solution.
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